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258 F. BERTELOOT ET J. DUVAL

Comme -I’hyperbolicité est une propriété ouverte et stable par revétement
(cf. §1), tout se réduit & montrer le

LEMME. Le polyédre
X1 =A{z, |z| = z|| pour au moins k+ 1 coordonnées}
est hyperbolique.

Démonstration. Soit f de C dans P?*(C) une courbe entiére contenue
dans X;. Elle doit «passer du temps» dans une de ses faces X; =
{z, |zl =|lzll, ieI} ou I est une partic de {1,...,2k+ 1} de cardinal
k + 1. Par exemple, on peut supposer f ‘I(X{l,._‘,kﬂ}) d’intérieur non vide.
Autrement dit, si f = [f; : ... : fuy1], on aura par prolongement analytique
|fil =+ = | fx1] sur tout C. Comme I’image de f est contenue dans X et
que toute partie de {1,...,2k + 1} de cardinal k+1 rencontre {1,...,k+1},
il s’ensuit que || f|| = [fi| sur tout C. Donc, pour tout i, |f;|/|fi| est bornée
par 1 sur C et f est constante par le théoréme de Liouville.  []

REMARQUE. La méme démonstration s’applique au résultat de Babets [1]
sur I’hyperbolicité de P*(C) privé de 2k+1 hypersurfaces en position générale.

3. LINEARISATION DES COURBES ENTIERES DANS (C*)F

On décrit dans ce paragraphe les limites les plus simples des courbes
entieres dans PX(C) privé de k + 1 hyperplans en position générale, donc
dans (C*)t.

DEFINITION.  Soit £ de C dans P*¥(C) une courbe entiere non constante.
Une limite de f est une courbe entiére non constante g de C dans P*(C)
obtenue comme limite (uniforme sur les compacts de C) de (for,) o (rn)
est une suite de reparamétrages a la source.

E Les propriétés suivantes se vérifient facilement:
a) une limite d’une limite g de f en est encore une pour f;

b) si une courbe entiere évite une hypersurface dans P*(C), ses limites
€vitent encore cette hypersurface ou y sont contenues.
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THEOREME. Soit f: C — P¥(C) une courbe entiére non constante évitant
k+ 1 hyperplans en position générale qu’on choisit commme les hyperplans
de coordonnées. Alors [ posséde une limite exponentielle non constante de
la forme :

9() = [ce™] :=[c1 €M% ... crp1 %], ¢, 0 dans C.

Démonstration. En voici le schéma: comme plus haut on extrait les racines
n-iemes f1/" de f que I’on reparamétre de sorte que f'/"or, converge vers ¢
entiere non constante. L’idée est maintenant d’exploiter le fait que (for,) ne
peut &tre normale car proche de (¢"). On la renormalise prés d’une intersection
entre I'image de ¢ et le lieu de non-normalité des puissances n-iémes pour
créer la limite exponentielle voulue.

Plus précisément, notons Y ce lieu ol la famille (z = Z") n’est pas
normale. C’est un polyédre constitué des faces

Yy ={z, |z|=z|> |z, pour tout 7} .

Son complémentaire consiste en k -+ 1 polydisques ouverts
Ui={z, |lz|>|al, 1#i}.

Pour simplifier la discussion, supposons les composantes de ¢ distinctes
en module. Remarquons que la courbe entiere ¢(C) rencontre Y : en fait, la
- préimage ¢~ (Y) sépare C, sinon la courbe serait enticrement contenue dans
un des polydisques fermés U; qui sont hyperboliques.

Comme |¢;] # [¢;|, on doit avoir (¢;/¢;) # 0 sur ¢~ (¥;) hors de points
1solés. Autrement dit, la courbe @(C) est transverse A toutes les faces de Y
en une intersection générique.

On se place au voisinage A d’un tel point générique dans ¢~1(Y), par
~exemple 0 aprés translation. Son image ¢(A) est transverse 3 Y. Il en est de
méme avant la limite pour f,(A) ol f, = f/"or,. On peut donc supposer
- apres translation que f,(0) est dans Y, par exemple dans le bord du polydisque
unité U = Uy, de la carte (zk+1 = 1), et que sa puissance n-ieme converge
. vers c¢, quitte a extraire.

‘ Relevons ¢ et f, dans cette carte via I'exponentielle en posant ¢ = ¥
et fu = e¥ ou 4, converge vers Y. Ainsi 1, converge vers 1/, puis
- n(Yn(z/n) — 1¥,(0)) vers az localement uniformément, ot o = Y’ (0).

Donc f o ru(z/n) = (f)"(0)e"@n@/m=4O) tend vers la limite voulue
9(z) = ce®*. Celle-ci n’est pas constante: en effet ¢(0) est dans 1’une des
- faces du bord de U par exemple Yy ;. La transversalité de la courbe ?(C)
~ a cette face se traduit par ¢/(0) £ 0 d’ou a; #0.
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Le cas général se discute de maniére analogue en groupant les composantes
de ¢ identiques en module. Ainsi on ne retiendra par exemple de Y que les

faces Yy pour |¢;| # |¢;|. [

REMARQUES.

1) On peut supposer de plus « réel dans la limite exponentielle g. Si
ce n’est pas le cas, voici comment construire une limite de ¢ (et donc
de f) satisfaisant cette propriété: considérons 1’enveloppe convexe des «;
significatifs (ceux correspondant a des coefficients ¢; # 0) dans 1’écriture
de g; quitte a reparamétrer g, on suppose cette enveloppe contenue dans le
demi-plan supérieur avec une aréte réelle: par exemple «; réel pour i < p et
Im(ay) > 0 pour i > p; de g(z+ in) = [/ ce®*] on extrait une sous-suite
convergeant vers h(z) = [c1e®*:...:c,e®*:0:...:0] qui convient.

2) Ce théoreme contient celui de Green: en effet, soit f(C) une courbe
entiere non constante dans P¥(C) omettant 2k + 1 hyperplans en position
générale, d’équations (; = 0). En considérant @ = [[; : ... : Iy4q]
le plongement correspondant dans P%*(C), la courbe entitre @ o f évite
maintenant les hyperplans de coordonnées. Elle possede une limite de la forme
suivante, quitte a permuter et prendre des multiples des formes linéaires /; :

g)=1[e*:...:e**:0:...:0] avec a; =0y ssi i<p.

Par position générale, chacune des formes linéaires /; est toujours combi-
naison de k4 1 autres; il en est donc de méme pour les composantes de D.
Ceci entraine que p < k: sinon toute composante de g serait proportionnelle
a e“'* et g serait constante. Mais, d’un autre cOté, la premiere composante

de g doit étre combinaison des k + 1 dernieres, soit:

€Mt = g et

i>k+1

Or on a dans cette égalité «; # a; puisque p < k. C’est impossible.

4. COMPLEMENTAIRE D’UNE COURBE A TROIS COMPOSANTES DANS P?(C)

Nous appliquons ce qui précéde a I’étude de I’hyperbolicité du complé-
mentaire de trois courbes dans P?(C) (comparer avec [5], [6]).

|
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