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F. BERTELOOT ET J. DUVAL

Comme l'hyperbolicité est une propriété ouverte et stable par revêtement
(cf. § 1), tout se réduit à montrer le

LEMME. Le polyèdre

Xi {z-> M — \\z\\ pour au moins k-\-l coordonnées}

est hyperbolique.

Démonstration. Soit / de C dans P2^(C) une courbe entière contenue
dans X\. Elle doit « passer du temps » dans une de ses faces Xj
{z, \zi\ \\z\\, iel} où I est une partie de {1,., 2k + 1} de cardinal
k-\- 1. Par exemple, on peut supposer /-1(Xri,...,&+i}) d'intérieur non vide.
Autrement dit, si /=[/!:... : f2k+\], on aura par prolongement analytique
\fi\ ••' \fk+i | sur tout C. Comme l'image de / est contenue dans X\ et
que toute partie de {1,..., 2k + 1} de cardinal k-\-1 rencontre {1,..., k + 1},
il s'ensuit que ||/|| a |/i| sur tout C. Donc, pour tout i, \fi\/\fi\ est bornée
par 1 sur C et / est constante par le théorème de Liouville.

Remarque. La même démonstration s'applique au résultat de Babets [1]
sur 1 hyperbolicité de P*(C) privé de 2k+1 hypersurfaces en position générale.

3. Linéarisation des courbes entières dans (C*)*

On décrit dans ce paragraphe les limites les plus simples des courbes
entières dans P*(C) privé de k + 1 hyperplans en position générale, donc
dans (C*)*.

Définition. Soit / de C dans P*(C) une courbe entière non constante.
Une limite de / est une courbe entière non constante g de C dans P*(C)
obtenue comme limite (uniforme sur les compacts de C) de (/ o rn) où (rn)
est une suite de reparamétrages à la source.

Les propriétés suivantes se vérifient facilement:

a) une limite d'une limite g de / en est encore une pour / ;

b) si une courbe entière évite une hypersurface dans P*(C), ses limites
évitent encore cette hypersurface ou y sont contenues.



SUR L'HYPERBOLICITÉ DE CERTAINS COMPLÉMENTAIRES 259

Théorème. Soit f: C -> P*(C) une courbe entière non constante évitant
k + 1 hyperplans en position générale qu 'on choisit commme les hyperplans
de coordonnées. Alors f possède une limite exponentielle non constante de
la forme :

g(z) [ceaz] := [c{ eaiZ : : cw eak+lZ], ch at dans C

Démonstration. En voici le schéma : comme plus haut on extrait les racines
n-ièmes /1//n de / que l'on reparamètre de sorte que fl!n o rn converge vers 0
entière non constante. L'idée est maintenant d'exploiter le fait que (forn) ne
peut être normale car proche de (0"). On la renormalise près d'une intersection
entre l'image de f et le lieu de non-normalité des puissances n-ièmes pour
créer la limite exponentielle voulue.

Plus précisément, notons F ce lieu où la famille (z zn) n'est pas
normale. C'est un polyèdre constitué des faces

Yij {z, [z/1 \zj\ > \zi\, pour tout /}
Son complémentaire consiste en k + 1 polydisques ouverts

— {Zj Ui\ > \zi\, l f i} •

Pour simplifier la discussion, supposons les composantes de f distinctes
en module. Remarquons que la courbe entière f(C) rencontre Y ; en fait, la
préimage <p (Y) sépare C, sinon la courbe serait entièrement contenue dans
un des polydisques fermés Ui qui sont hyperboliques.

Comme |é! # lél, on doit avoir (<&/<£,)' £ 0 sur f-fYjj) hors de points
isolés. Autrement dit, la courbe <ß(C) est transverse à toutes les faces de Y
en une intersection générique.

On se place au voisinage À d'un tel point générique dans f~l(Y), par
exemple 0 après translation. Son image 0(A) est transverse à F. Il en est de
même avant la limite pour /„(A) où fn f/» o rn. On peut donc supposer
après translation que fn(0) est dans F, par exemple dans le bord du polydisque
unité U Uk+i de la carte (zk+\ =* 1), et que sa puissance n-ième converge
vers c, quitte à extraire.

Relevons f et fn dans cette carte via l'exponentielle en posant f e^
et fn é» où fn converge vers f. Ainsi f'n converge vers f, puis
n{fn(z/ri) — fn(0)) vers az localement uniformément, où a f(Q)

Donc / o rn{z/n) (/n)»(0)^.ft/n)-^(0)) tend vers k ^ voulue
g(z) - ceaz. Celle-ci n'est pas constante: en effet 0(0) est dans l'une des
faces du bord de U par exemple Fu+1. La transversalité de la courbe 0(C)
à cette face se traduit par (0) 0 d'où a\ f=- 0.
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Le cas général se discute de manière analogue en groupant les composantes
de (f) identiques en module. Ainsi on ne retiendra par exemple de Y que les
faces Yij pour | & | ^ | <pj |.

Remarques.
1) On peut supposer de plus a réel dans la limite exponentielle g. Si

ce n'est pas le cas, voici comment construire une limite de g (et donc
de /) satisfaisant cette propriété: considérons l'enveloppe convexe des D;

significatifs (ceux correspondant à des coefficients c; ^ 0) dans l'écriture
de g ; quitte à reparamétrer g, on suppose cette enveloppe contenue dans le

demi-plan supérieur avec une arête réelle : par exemple a* réel pour i < p et

Im(ai) > 0 pour i > p ; de g(z + in) [eianceaz] on extrait une sous-suite

convergeant vers h(z) [c1eaiZ : : cpeaPz : 0 : : 0] qui convient.

2) Ce théorème contient celui de Green: en effet, soit /(C) une courbe
entière non constante dans P^(C) omettant 2k + l hyperplans en position
générale, d'équations (/, 0). En considérant O [l\ : : hk+i\
le plongement correspondant dans P2k(C), la courbe entière <t> o / évite
maintenant les hyperplans de coordonnées. Elle possède une limite de la forme
suivante, quitte à permuter et prendre des multiples des formes linéaires k :

g(z) [eaiZ : : eagZ : 0 : : 0] avec ai a\ ssi i <p

Par position générale, chacune des formes linéaires /; est toujours combinaison

de k + 1 autres ; il en est donc de même pour les composantes de O.
Ceci entraine que p < k : sinon toute composante de g serait proportionnelle
à eaiZ et g serait constante. Mais, d'un autre côté, la première composante
de g doit être combinaison des k+ 1 dernières, soit :

Or on a dans cette égalité ai / ql\ puisque p < k. C'est impossible.

4. Complémentaire d'une courbe à trois composantes dans P2(C)

Nous appliquons ce qui précède à l'étude de l'hyperbolicité du
complémentaire de trois courbes dans P2(C) (comparer avec [5], [6]).

i>k-(-1
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