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1 SUR L'HYPERBOLICITÉ DE CERTAINS COMPLÉMENTAIRES

par François Berteloot et Julien Duval
1

j RÉSUMÉ. Nous donnons, dans l'esprit de l'argument de Ros pour le théorème
| de Picard, une preuve nouvelle et directe de l'hyperbolicité de deux complémentaires
i d'hypersurfaces de l'espace projectif: celui de 2fc+ 1 hyperplans en position générale
| dans P*(C), ainsi que celui d'une courbe à 3 composantes, générique, de degré au
| moins 5 dans P2(C).

j 0. Introduction

Une partie de l'espace projectif P*(C) est hyperbolique si elle ne contient

pas de courbe entière non constante, i.e. d'image holomorphe non constante
,j de C.

| L'objet de cet article est de donner une nouvelle démonstration, élémentaire,
| de l'hyperbolicité de deux exemples classiques de complémentaires d'hyper-

surfaces projectives:

j - dans P*(C), le complémentaire de 2£ + 1 hyperplans en position générale
j (Green [8]);
{ - dans P2(C), le complémentaire d'une courbe à trois composantes, générique,
j de degré > 5 (Grauert [7] pour trois coniques, Dethloff-Schumacher-Wong
j [5], [6] si aucune des trois composantes n'est une droite).

j Ces exemples s'inscrivent dans le cadre de la conjecture de Kobayashi
(voir [5] par exemple) pour les complémentaires :

Conjecture. Une hypersurface à p composantes, générique, de degré

>2k+\ de P*(C) a un complémentaire hyperbolique.
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Notons au passage les progrès récents (voir [11] et [4]) dans le cas bien

plus difficile que ceux traités ici du complémentaire d'une courbe irréductible
dans P2(C).

Les démonstrations connues de l'hyperbolicité des deux exemples qui nous
intéressent reposent sur des techniques de distribution des valeurs (lemme de

Borel [2]) ou de métriques de jets à courbure négative (voir [9] comme
référence générale).

La démarche directe proposée ici s'inspire de la démonstration de Ros du

théorème de Picard. L'ingrédient principal en est le lemme de Zalcman-Brody
[12], [3] qui permet d'extraire d'une suite de courbes entières non constantes

une sous-suite qui converge après reparamétrage vers une courbe entière non
constante.

Voici l'argument de Ros tel qu'il est exposé par Zalcman dans [13] :

Soit / holomorphe non constante de C dans P^C) évitant 0,1 et oo.
Ses racines n-ièmes fx!n évitent de plus en plus de points sur le cercle unité.

Quitte à reparamétrer, elles convergent après extraction vers une fonction
entière non constante qui évite maintenant tout le cercle unité. Elle est à

valeurs dans le disque unité ou son complémentaire, ce qui contredit le

théorème de Liouville.

Cette démonstration s'adapte bien au résultat de Green. La seule modification

consiste à faire jouer le même rôle aux hyperplans omis grâce à un

plongement adéquat de P*(C) dans P2/c(C). L'énoncé se réduit par le même

usage de racines ^z-ièmes et passage à la limite à l'hyperbolicité d'un certain

polyèdre dans F2k(C). Celle-ci résulte alors du théorème de Liouville.

La démonstration de Ros peut aussi s'interpréter comme une « linéarisation »

des courbes entières de C* :

Soit / holomorphe non constante de C dans C*. Alors il existe une suite

de reparamétrages à la source (rn) telle que f orn converge vers ez.

En effet, on trouve par le lemme de Zalcman-Brody des reparamétrages sn

tels que fx!n o sn converge après extraction vers 0 de C dans C*. L'image
de (f) doit rencontrer le cercle unité en une valeur non complètement critique
donc, quitte à reparamétrer, on a :

4>{z) ei6(\ +z + 0(z2))

Ainsi foSn(z/n)équivaut à e"'e(l+z/n)" qui tend vers ez après extraction.
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Cet énoncé de linéarisation se généralise bien aux courbes entières de

(C*)*. En particulier, toute courbe entière non constante dans (C*)2 possède

une limite (au sens de limite d'une suite de courbes construites en reparamétrant

la courbe initiale) qui est feuille d'un feuilletage linéaire de P2(C).

Le cas du complémentaire d'une courbe C à trois composantes en découle

de la manière suivante: notons d'abord que P2(C) \ C est un revêtement

ramifié de (C*)2 du fait des trois composantes de C. L'idée est maintenant

de remplacer une courbe entière non constante dans P2(C) \ C par une de ses

limites feuille d'un feuilletage holomorphe de P2(C). Ce feuilletage s'obtient

par ce qui précède comme l'image réciproque par le revêtement ramifié d'un
feuilletage linéaire de P2(C). On montre ensuite que cette feuille limite
doit être algébrique en analysant l'intersection d'une feuille transcendante

du feuilletage avec le lieu de ramification du revêtement. Elle est donc tracée

sur une courbe rationnelle ne coupant C qu'en deux points. C'est une situation

non générique.

Voici le plan de ce texte: après des préliminaires sur l'hyperbolicité, le
second paragraphe traite du théorème de Green tandis que la linéarisation des

courbes entières de (C*)fc fait l'objet du troisième. Le quatrième paragraphe
est consacré au complémentaire des courbes à trois composantes dans P2(C).
Enfin un appendice explicite les courbes de Brody dans (C*)fc, apportant un
autre éclairage sur l'énoncé de linéarisation.

1. Préliminaires

Notre référence générale pour l'hyperbolicité est la monographie [9].

Définition. Soit X une variété complexe. Une partie A de X est
hyperbolique si elle ne contient pas de courbe entière non constante : il n'existe
pas d'application holomorphe non constante de C dans X d'image contenue
dans A.

Les premiers exemples proviennent du théorème de Liouville :

Exemple. Le complémentaire d'un voisinage d'une hypersurface projective

de P*(C) est hyperbolique.
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