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1 SUR L'HYPERBOLICITÉ DE CERTAINS COMPLÉMENTAIRES

par François Berteloot et Julien Duval
1

j RÉSUMÉ. Nous donnons, dans l'esprit de l'argument de Ros pour le théorème
| de Picard, une preuve nouvelle et directe de l'hyperbolicité de deux complémentaires
i d'hypersurfaces de l'espace projectif: celui de 2fc+ 1 hyperplans en position générale
| dans P*(C), ainsi que celui d'une courbe à 3 composantes, générique, de degré au
| moins 5 dans P2(C).

j 0. Introduction

Une partie de l'espace projectif P*(C) est hyperbolique si elle ne contient

pas de courbe entière non constante, i.e. d'image holomorphe non constante
,j de C.

| L'objet de cet article est de donner une nouvelle démonstration, élémentaire,
| de l'hyperbolicité de deux exemples classiques de complémentaires d'hyper-

surfaces projectives:

j - dans P*(C), le complémentaire de 2£ + 1 hyperplans en position générale
j (Green [8]);
{ - dans P2(C), le complémentaire d'une courbe à trois composantes, générique,
j de degré > 5 (Grauert [7] pour trois coniques, Dethloff-Schumacher-Wong
j [5], [6] si aucune des trois composantes n'est une droite).

j Ces exemples s'inscrivent dans le cadre de la conjecture de Kobayashi
(voir [5] par exemple) pour les complémentaires :

Conjecture. Une hypersurface à p composantes, générique, de degré

>2k+\ de P*(C) a un complémentaire hyperbolique.
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Notons au passage les progrès récents (voir [11] et [4]) dans le cas bien

plus difficile que ceux traités ici du complémentaire d'une courbe irréductible
dans P2(C).

Les démonstrations connues de l'hyperbolicité des deux exemples qui nous
intéressent reposent sur des techniques de distribution des valeurs (lemme de

Borel [2]) ou de métriques de jets à courbure négative (voir [9] comme
référence générale).

La démarche directe proposée ici s'inspire de la démonstration de Ros du

théorème de Picard. L'ingrédient principal en est le lemme de Zalcman-Brody
[12], [3] qui permet d'extraire d'une suite de courbes entières non constantes

une sous-suite qui converge après reparamétrage vers une courbe entière non
constante.

Voici l'argument de Ros tel qu'il est exposé par Zalcman dans [13] :

Soit / holomorphe non constante de C dans P^C) évitant 0,1 et oo.
Ses racines n-ièmes fx!n évitent de plus en plus de points sur le cercle unité.

Quitte à reparamétrer, elles convergent après extraction vers une fonction
entière non constante qui évite maintenant tout le cercle unité. Elle est à

valeurs dans le disque unité ou son complémentaire, ce qui contredit le

théorème de Liouville.

Cette démonstration s'adapte bien au résultat de Green. La seule modification

consiste à faire jouer le même rôle aux hyperplans omis grâce à un

plongement adéquat de P*(C) dans P2/c(C). L'énoncé se réduit par le même

usage de racines ^z-ièmes et passage à la limite à l'hyperbolicité d'un certain

polyèdre dans F2k(C). Celle-ci résulte alors du théorème de Liouville.

La démonstration de Ros peut aussi s'interpréter comme une « linéarisation »

des courbes entières de C* :

Soit / holomorphe non constante de C dans C*. Alors il existe une suite

de reparamétrages à la source (rn) telle que f orn converge vers ez.

En effet, on trouve par le lemme de Zalcman-Brody des reparamétrages sn

tels que fx!n o sn converge après extraction vers 0 de C dans C*. L'image
de (f) doit rencontrer le cercle unité en une valeur non complètement critique
donc, quitte à reparamétrer, on a :

4>{z) ei6(\ +z + 0(z2))

Ainsi foSn(z/n)équivaut à e"'e(l+z/n)" qui tend vers ez après extraction.
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Cet énoncé de linéarisation se généralise bien aux courbes entières de

(C*)*. En particulier, toute courbe entière non constante dans (C*)2 possède

une limite (au sens de limite d'une suite de courbes construites en reparamétrant

la courbe initiale) qui est feuille d'un feuilletage linéaire de P2(C).

Le cas du complémentaire d'une courbe C à trois composantes en découle

de la manière suivante: notons d'abord que P2(C) \ C est un revêtement

ramifié de (C*)2 du fait des trois composantes de C. L'idée est maintenant

de remplacer une courbe entière non constante dans P2(C) \ C par une de ses

limites feuille d'un feuilletage holomorphe de P2(C). Ce feuilletage s'obtient

par ce qui précède comme l'image réciproque par le revêtement ramifié d'un
feuilletage linéaire de P2(C). On montre ensuite que cette feuille limite
doit être algébrique en analysant l'intersection d'une feuille transcendante

du feuilletage avec le lieu de ramification du revêtement. Elle est donc tracée

sur une courbe rationnelle ne coupant C qu'en deux points. C'est une situation

non générique.

Voici le plan de ce texte: après des préliminaires sur l'hyperbolicité, le
second paragraphe traite du théorème de Green tandis que la linéarisation des

courbes entières de (C*)fc fait l'objet du troisième. Le quatrième paragraphe
est consacré au complémentaire des courbes à trois composantes dans P2(C).
Enfin un appendice explicite les courbes de Brody dans (C*)fc, apportant un
autre éclairage sur l'énoncé de linéarisation.

1. Préliminaires

Notre référence générale pour l'hyperbolicité est la monographie [9].

Définition. Soit X une variété complexe. Une partie A de X est
hyperbolique si elle ne contient pas de courbe entière non constante : il n'existe
pas d'application holomorphe non constante de C dans X d'image contenue
dans A.

Les premiers exemples proviennent du théorème de Liouville :

Exemple. Le complémentaire d'un voisinage d'une hypersurface projective

de P*(C) est hyperbolique.
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En effet un plongement de Veronese envoie ce complémentaire dans un
borné de C^. Ainsi l'adhérence de toute courbe entière non constante de

P*(C) coupe toute hypersurface projective.

On produit d'autres exemples par la propriété suivante qui résulte du
relèvement des homotopies pour un revêtement:

Invariance par revêtement. Soient X une variété complexe et Y un
revêtement non ramifié de X. Alors X est hyperbolique si et seulement si Y
l'est.

On obtient ainsi l'hyperbolicité des surfaces de Riemann hyperboliques au

sens traditionnel, i.e. celles dont le revêtement universel est le disque unité D.
L'outil de base de ce qui va suivre est le lemme de reparamétrisation

suivant, dû à Zalcman [12] pour X — P^C) et à Brody [3] en général (voir
aussi [9], chap. 3).

LEMME. Soient X une variété compacte complexe (munie d'une métrique
hermitienne) et (/„) une suite d'applications holomorphes du disque unité
dans X. On suppose que ||jÇ^(O)|j tend vers l'infini. Alors il existe une suite
de reparamétrages (rn) de C convergeant vers 0 pour laquelle fn o rn tend

(uniformément sur les compacts) vers une application entière non constante
(j) de C dans X après extraction d'une sous-suite.

De plus (j) est à dérivée bornée.

Remarque. Dans le contexte, ce lemme fait habituellement le lien entre

hyperbolicité et hyperbolicité au sens de Kobayashi, i.e. la non dégénérescence
de la pseudométrique donnée par

K(x,v) inf{l/r, r > 0 | 3f: D — C holomorphe avec /(0)=x, f'(0) rv},

où x est un point de X et v un vecteur tangent. Les complémentaires dans

ce texte seront ainsi hyperboliques complets et plongés hyperboliquement au

sens de Kobayashi (cf. [9]).

CONSÉQUENCE. Soient X une variété compacte complexe et fn: C —> X
une suite de courbes entières non constantes. Il existe une suite de

reparamétrages (rn) à la source telle que fn o rn converge vers une courbe
entière non constante après extraction.
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En voici une traduction directe:

OUVERTURE. Soit X une variété compacte complexe et F un fermé

hyperbolique dans X. Alors F possède un voisinage hyperbolique.

Sinon on créerait, à partir d'une base dénombrable de voisinages non

hyperboliques de F, une suite de courbes entières non constantes convergeant,

après extraction et reparamétrage, vers une courbe entière non constante

contenue dans F.

2. Le théorème de Green

Voici comment on peut adapter l'argument de Ros pour montrer la généralisation

suivante du théorème de Picard (due à Green [8]) :

THÉORÈME. L'espace projectif Fk(C) privé de 2k + 1 hyperplans en

position générale est hyperbolique.

Ici, «être en position générale» signifie que k-\-1 de ces hyperplans n'ont
pas d'intersection commune.

Démonstration. Plongeons P*(C) dans P2Â:(C) en envoyant les hyperplans
évités d'équation {/; 0} dans les hyperplans de coordonnées de P2k(C) par

<p [li :... : hk+i]

d'image notée P. Si A est une partie de P2k(C), on notera A* le complémentaire

dans A des hyperplans de coordonnées. On veut donc montrer l'hyper-
bolicité de P*.

Par position générale, P évite un voisinage des points de P2k(C) ayant
k + 1 coordonnées nulles. Autrement dit, P est contenu dans

Xe {z, ]zi| > e||z|| pour au moins k+ 1 coordonnées}

où ||z|| maxjlzil,..., |z2*+i|} et e est assez petit.
Il suffit donc de voir l'hyperbolicité de X*. Mais la puissance n-ième

(z •-> zn) induit un revêtement non ramifié de X*l/n sur V* et Xé/n converge
vers X\ en distance de Hausdorff.
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Comme l'hyperbolicité est une propriété ouverte et stable par revêtement
(cf. § 1), tout se réduit à montrer le

LEMME. Le polyèdre

Xi {z-> M — \\z\\ pour au moins k-\-l coordonnées}

est hyperbolique.

Démonstration. Soit / de C dans P2^(C) une courbe entière contenue
dans X\. Elle doit « passer du temps » dans une de ses faces Xj
{z, \zi\ \\z\\, iel} où I est une partie de {1,., 2k + 1} de cardinal
k-\- 1. Par exemple, on peut supposer /-1(Xri,...,&+i}) d'intérieur non vide.
Autrement dit, si /=[/!:... : f2k+\], on aura par prolongement analytique
\fi\ ••' \fk+i | sur tout C. Comme l'image de / est contenue dans X\ et
que toute partie de {1,..., 2k + 1} de cardinal k-\-1 rencontre {1,..., k + 1},
il s'ensuit que ||/|| a |/i| sur tout C. Donc, pour tout i, \fi\/\fi\ est bornée
par 1 sur C et / est constante par le théorème de Liouville.

Remarque. La même démonstration s'applique au résultat de Babets [1]
sur 1 hyperbolicité de P*(C) privé de 2k+1 hypersurfaces en position générale.

3. Linéarisation des courbes entières dans (C*)*

On décrit dans ce paragraphe les limites les plus simples des courbes
entières dans P*(C) privé de k + 1 hyperplans en position générale, donc
dans (C*)*.

Définition. Soit / de C dans P*(C) une courbe entière non constante.
Une limite de / est une courbe entière non constante g de C dans P*(C)
obtenue comme limite (uniforme sur les compacts de C) de (/ o rn) où (rn)
est une suite de reparamétrages à la source.

Les propriétés suivantes se vérifient facilement:

a) une limite d'une limite g de / en est encore une pour / ;

b) si une courbe entière évite une hypersurface dans P*(C), ses limites
évitent encore cette hypersurface ou y sont contenues.



SUR L'HYPERBOLICITÉ DE CERTAINS COMPLÉMENTAIRES 259

Théorème. Soit f: C -> P*(C) une courbe entière non constante évitant
k + 1 hyperplans en position générale qu 'on choisit commme les hyperplans
de coordonnées. Alors f possède une limite exponentielle non constante de
la forme :

g(z) [ceaz] := [c{ eaiZ : : cw eak+lZ], ch at dans C

Démonstration. En voici le schéma : comme plus haut on extrait les racines
n-ièmes /1//n de / que l'on reparamètre de sorte que fl!n o rn converge vers 0
entière non constante. L'idée est maintenant d'exploiter le fait que (forn) ne
peut être normale car proche de (0"). On la renormalise près d'une intersection
entre l'image de f et le lieu de non-normalité des puissances n-ièmes pour
créer la limite exponentielle voulue.

Plus précisément, notons F ce lieu où la famille (z zn) n'est pas
normale. C'est un polyèdre constitué des faces

Yij {z, [z/1 \zj\ > \zi\, pour tout /}
Son complémentaire consiste en k + 1 polydisques ouverts

— {Zj Ui\ > \zi\, l f i} •

Pour simplifier la discussion, supposons les composantes de f distinctes
en module. Remarquons que la courbe entière f(C) rencontre Y ; en fait, la
préimage <p (Y) sépare C, sinon la courbe serait entièrement contenue dans
un des polydisques fermés Ui qui sont hyperboliques.

Comme |é! # lél, on doit avoir (<&/<£,)' £ 0 sur f-fYjj) hors de points
isolés. Autrement dit, la courbe <ß(C) est transverse à toutes les faces de Y
en une intersection générique.

On se place au voisinage À d'un tel point générique dans f~l(Y), par
exemple 0 après translation. Son image 0(A) est transverse à F. Il en est de
même avant la limite pour /„(A) où fn f/» o rn. On peut donc supposer
après translation que fn(0) est dans F, par exemple dans le bord du polydisque
unité U Uk+i de la carte (zk+\ =* 1), et que sa puissance n-ième converge
vers c, quitte à extraire.

Relevons f et fn dans cette carte via l'exponentielle en posant f e^
et fn é» où fn converge vers f. Ainsi f'n converge vers f, puis
n{fn(z/ri) — fn(0)) vers az localement uniformément, où a f(Q)

Donc / o rn{z/n) (/n)»(0)^.ft/n)-^(0)) tend vers k ^ voulue
g(z) - ceaz. Celle-ci n'est pas constante: en effet 0(0) est dans l'une des
faces du bord de U par exemple Fu+1. La transversalité de la courbe 0(C)
à cette face se traduit par (0) 0 d'où a\ f=- 0.
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Le cas général se discute de manière analogue en groupant les composantes
de (f) identiques en module. Ainsi on ne retiendra par exemple de Y que les
faces Yij pour | & | ^ | <pj |.

Remarques.
1) On peut supposer de plus a réel dans la limite exponentielle g. Si

ce n'est pas le cas, voici comment construire une limite de g (et donc
de /) satisfaisant cette propriété: considérons l'enveloppe convexe des D;

significatifs (ceux correspondant à des coefficients c; ^ 0) dans l'écriture
de g ; quitte à reparamétrer g, on suppose cette enveloppe contenue dans le

demi-plan supérieur avec une arête réelle : par exemple a* réel pour i < p et

Im(ai) > 0 pour i > p ; de g(z + in) [eianceaz] on extrait une sous-suite

convergeant vers h(z) [c1eaiZ : : cpeaPz : 0 : : 0] qui convient.

2) Ce théorème contient celui de Green: en effet, soit /(C) une courbe
entière non constante dans P^(C) omettant 2k + l hyperplans en position
générale, d'équations (/, 0). En considérant O [l\ : : hk+i\
le plongement correspondant dans P2k(C), la courbe entière <t> o / évite
maintenant les hyperplans de coordonnées. Elle possède une limite de la forme
suivante, quitte à permuter et prendre des multiples des formes linéaires k :

g(z) [eaiZ : : eagZ : 0 : : 0] avec ai a\ ssi i <p

Par position générale, chacune des formes linéaires /; est toujours combinaison

de k + 1 autres ; il en est donc de même pour les composantes de O.
Ceci entraine que p < k : sinon toute composante de g serait proportionnelle
à eaiZ et g serait constante. Mais, d'un autre côté, la première composante
de g doit être combinaison des k+ 1 dernières, soit :

Or on a dans cette égalité ai / ql\ puisque p < k. C'est impossible.

4. Complémentaire d'une courbe à trois composantes dans P2(C)

Nous appliquons ce qui précède à l'étude de l'hyperbolicité du
complémentaire de trois courbes dans P2(C) (comparer avec [5], [6]).

i>k-(-1
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THÉORÈME. Le plan projectif privé d'une courbe C à 3 composantes,

générique, de degré au moins 5, est hyperbolique.

Ici la généricité signifie d'une part que les composantes C; de C sont lisses

et se coupent transversalement, d'autre part que l'on élimine les obstructions

évidentes à l'hyperbolicité du complémentaire de C, les cas où une courbe

rationnelle ne rencontre C qu'en deux points. Plus précisément on exclut:

i - une tangente à C passant par deux points doubles,

1 - une bitangente ou une tangente d'inflexion à C passant par un point

j double,
;

{ - une conique ne rencontrant C qu'en deux points.

Le dernier cas n'arrive que si l'une des composantes de C, par exemple

C3, est une droite. La conique coupe C3 en deux points qui sont aussi sur
i Ci UC2 et y possède un contact d'ordre au moins 8 avec Ci U C2.

I On vérifie que toutes ces situations forment un diviseur dans l'espace des

courbes à 3 composantes de degré fixé. C'est donc une généricité au sens de

; Zariski.

Démonstration du théorème. Elle procède par contradiction et consiste en

deux étapes: construire, à partir d'une courbe entière évitant C, une limite
qui dégénère algébriquement ; puis discuter les courbes algébriques rencontrant

I peu C pour tomber sur une situation non générique.
j La première étape provient de l'utilisation du résultat du paragraphe

précédent après avoir projeté P2(C) \ C dans (C*)2 grâce aux trois
composantes. On en déduit une limite évitant C qui se projette comme feuille

j d'un feuilletage linéaire de (C*)2. Ceci va forcer la rationalité des pentes de

ce feuilletage et donc l'algébricité de la limite.
La deuxième étape, classique, utilise systématiquement le théorème de

j Bézout et la formule du genre pour des courbes à singularités simples.

j a) Le cadre. Soit (Pi 0) l'équation (de degré dt) de la courbe C/. Notons
j F : P2(C) —> P2(C) l'endomorphisme holomorphe de degré d ppcm(^i, d2, d$)
j défini par

F(z) [Px(zr : PiizT2 : W"3! avec mid^d.
H Par construction, F envoie le complémentaire de C dans (C*)2. Son lieu
;

| critique consiste en les courbes Q avec multiplicité mt - 1 et une courbe D
de degré d\ + d2 + d3 — 3. Remarquons que D évite les points doubles de C

j du fait de leur transversalité.
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Soit maintenant une courbe entière non constante /: C — P2(C) évitant
C. Comme F o f omet les axes de coordonnées, elle possède une limite
exponentielle non constante de la forme h(z) [c1eaiZ : c2eOLz : c3ea3Z] avec

at réel (cf. §3).

Remarquons qu'une limite de F of se relève toujours via F en une limite
de / En effet, si F of o rn tend vers h, alors f orn doit être normale. Sinon
sa renormalisation donnerait une courbe entière non constante dans une fibre
de F. Donc, quitte à extraire, f orn converge vers g avec F o g h.

En particulier, h(C) n'est pas contenue dans l'un des axes de coordonnées.
Sinon g(C) serait tracée sur une des composantes de C, par exemple C\
et éviterait les deux autres. Or, pour des raisons de degré, le cardinal de

Ci n (C2 U C3) est au moins 3. Ceci est impossible car une courbe algébrique
privée de 3 points est hyperbolique.

Ainsi, quitte à reparamétrer / et prendre des multiples des équations P\,
on aura h(z) (ez,eaz) dans une carte de P2(C).

b) Absence de limites transcendantes. Montrons que les adhérences h{C)
et g(C) sont algébriques. Il suffit pour cela de voir que a est rationnel.
Supposons le contraire.

La courbe entière h(C) est alors l'une des feuilles complexes de

l'hypersurface réelle Levi-plate H d'équation (|y| \x\a) dans (C*)2. Les
autres feuilles complexes sont clairement des limites de h et donc de F of.
Ainsi l'adhérence de g(C) dans P2(C) \ C est feuilletée par des limites de

g, donc de /, relevant via F les feuilles complexes de H.
La contradiction va venir d'une discussion de la position de g(C) par

rapport à D, le lieu critique de la restriction de F au complémentaire de C.
Du fait de notre latitude de choix de h(C) parmi l'infinité de feuilles

complexes de H, on peut supposer que h(C) ne coupe F(D) qu'en des

valeurs régulières de F\Di de plus transversalement. En effet,, les valeurs
singulières de F\D ainsi que les tangences de F(D) aux feuilles complexes
de H sont en nombre fini, puisque ces feuilles sont transcendantes et F(D)
algébrique.

Alors g(C) doit éviter D : sinon la différentielle Dp(F) en un point
d'intersection de #(C) avec D aurait une image contenant les tangentes à

F(D) et h(C) en F(p) ; elle serait de rang maximal.

Il en est de même pour les limites non constantes de g : sinon l'une d'entre
elles serait contenue dans D\C qui est hyperbolique.

Ainsi l'adhérence g(C) omet D puisqu'elle est feuilletée dans P2(C) \ C

par des limites de g et que F~l(H) ne rencontre C qu'en ses points doubles,
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soit hors de D.Doncg(C)est contenu dans le complémentaire d'un voisinage
de Ddans P2(C) qui est hyperbolique (cf. § 1), d'où la contradiction.

c) Discussion des limites algébriques. Par ce qui précède, la courbe
entière g(C)est contenue dans une composante irréductible F de degré 5
d'une courbe algébrique d'équation (après permutation des composantes de C) :

i) (P"' p'^) avec pgcd(«i, 1

ou

ii) (P"'P"2 P"3)avec pgcd(«,,«2,«3) 1

Notons que T ne rencontre C qu'en deux points exactement, toujours car
une courbe privée de 3 points est hyperbolique. Plus précisément, si F est
singulière en un de ces points, cette singularité doit être irréductible, comme
on le constate en passant à la normalisation.

Montrons qu'aucune de ces possibilités n'est générique :

5

Cas ^ Notons me {p,q} avec p dans CjnC2 et q dans C3\(CjUC2).
D'après l'équation i), T a en pune multiplicité d'intersection «, avec C2 et

n2avec Ci. Comme p est l'unique intersection de T avec Ci et C2, on en
déduit par le théorème de Bézout que 8 divise n{ et n2. Ainsi <5=1 et F
est une droite. Comme cette droite coupe C, avec multiplicité d, (en p pouri— 1,2, en qpour i3 avec d2 + d2 + d2 > 5, elle doit être une bitangente
ou une tangente d inflexion à C passant par le point double p.

Cas ii) Notons cette fois rn C {pi,p2} avec p-, dans C,- n C3.
Supposons d'abord F non singulière. Elle doit être rationnelle carT\ {pi,Pi} n est pas hyperbolique. C'est donc une droite ou une conique.

Dans le premier cas, Fest une tangente à C passant par les deux points
doubles p, et p2.Sinonelle serait transverse à C en p, et p2 et le théorème
de Bézout imposerait dx « d21, d32 contredisant l'hypothèse sur le
degré de C.

Dans le second cas, la conique T possède un contact d'ordre 2d, avec
Q en Pi pour f 1,2 toujours par Bézout. Elle est donc transverse à C3
en Pl et p2.L'intersection totale de F avec C3 vaut 2 et C3 doit être unedroite. Ainsi dx+ d2>4 et la conique F a un contact d'ordre 8 au moins
avec Cj U C;..
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- Analysons le cas singulier. Près de pt, la courbe F a une équation
locale de la forme (xn ySi) avec pgcd(rz-, sf) 1 puisque la singularité y
est irréductible. Ici (x 0) est une équation locale de Q et (y 0) de C3.

Comme plus haut, le calcul des multiplicités d'intersection et le théorème
de Bézout donnent:

(1) 5 si/di s2/d2 ri/d3 + r2/d3

qui implique

(2) (ö — 1)(£ — 2) {r\/d2 — l){s\/di — 1) + (r2/d3 — l){s2/d2 — 1).

Par ailleurs, la formule du genre pour une courbe irréductible de genre g,
de degré ö et possédant un certain nombre de singularités irréductibles de la
forme (xn /') s'écrit (cf. par exemple [10]):

2g <(S- 1)0 - 2) - ]T(r; - 1)0 - 1),

l'inégalité provenant de la présence éventuelle d'autres singularités. Dans notre
cas, on en déduit:

(3) 0 - 1)((S - 2) > (n - l)(Sl - 1) + (r2 - l)fe - 1).

La comparaison de (2) et (3) impose l'égalité terme à terme des seconds
membres; en particulier T est non singulière hors de p\ et p2. On obtient:

(ri — l)(^i — 1) (hM-l)feM —1), (r2—\)(s2-l) (r2/d3-l)(s2/d2—l).

Comme F est singulière, l'une de ces égalités - par exemple la première -
est non nulle. Ceci entraîne dx d3 1 (Ci et C3 sont des droites et donc
d2 > 3. On en déduit que la deuxième égalité doit être nulle, soit r2 1.

D'après (1), on obtient S s\ n + 1. Autrement dit, la seule singularité
de T est du type (x5-1 yô) avec S > 3 en pi.

Ceci va imposer la présence d'une tangente d'inflexion à C2 en p2 : en
effet, soit (L 0) l'équation de la tangente à F en p2 et T\ la courbe
d'équation (P\~lL ÀPf). On choisit A de sorte que T et T\ coïncident. Il
suffit pour cela de fixer À pour avoir un contact d'ordre au moins ö2 - 1 en

pi entre F et F\ Comme, par construction, F et F\ sont déjà tangentes en

P2, elles doivent coïncider par Bézout. Ainsi la tangente à F en p2 est une
tangente d'inflexion car c'en est une pour F\ puisque ö > 3. C'en est une
aussi pour C2 puisque F et C2 y ont un contact important (d'ordre ôd2).

En conclusion, aucun de ces cas de figure n'est générique, ce qui achève
la démonstration du théorème.
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Remarque. On construit facilement des exemples de courbes C à trois

composantes de degré 5 dont le complémentaire n'est pas hyperbolique à

cause d'une droite ne coupant C qu'en 2 points. En voici deux, présentés

en coordonnées affines, où l'obstruction T est une conique ou une cubique

rationnelle ne rencontrant C qu'en 2 points.

a) C est l'union des deux paraboles d'équation (=L2x y2 — 2) et de l'axe

des x. Le cercle F d'équation (x2 + y2 1) a des contacts d'ordre 4 avec

les paraboles en leurs sommets situés sur l'axe des x.
b) C est l'union de la cubique d'équation (y3 x3 +x), de l'axe des x

et de la droite à l'infini. La cubique rationnelle T d'équation (x y3) a son

point de rebroussement à l'infini au point de rencontre des deux droites et

un contact d'ordre 9 avec la cubique de C en l'origine, également sur l'axe
des x.

5. Appendice. Courbes de Brody dans (C*)*

Le théorème du paragraphe 3 est aussi conséquence de la description des

courbes de Brody dans (C*)*.

DÉFINITION. Une courbe entière /: C —> P*(C) est dite de Brody si

\\ff II < 1, la dérivée étant mesurée dans les métriques usuelles de C et

P*(C).

Toute courbe entière possède une limite de Brody, précisément par le
lemme de Brody (cf. §1). Celles contenues dans (C*)* sont très simples:

THÉORÈME. Les seules courbes de Brody f: C —» P*(C) évitant les

hyperplans de coordonnées sont de la forme

f(z) [ceaz] := [aeaiz : : ck+leak+lZ], ci: at dans C

Démonstration. Ecrivons f — e^ dans une carte de P*(C), par exemple
(Zk+l 1).

La première étape, classique (voir [5]), montre que les composantes de

0 sont quadratiques. L'argument remonte aux origines de la théorie de
Nevanlinna. La propriété d'être de Brody pour / se traduit directement

par la surharmonicité de Log(l + \J\f +... + \fk\2) - |z|2. Les moyennes
de Log(l + |/i|2 + + \fk\2) sur les cercles de centre 0 et de rayon r
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croissent ainsi au plus quadratiquement en r. Il en est de même pour celles
de Log(l + \fj\2), donc de Log(|^| + puisque Log|jÇ[ Re(<^) est

harmonique. Or le développement en série entière de <ßj donne:
p2tt

tt/1 <pjn\0) ni Re <pj(rel0)e~in6 dO
Jo

d'où
p2ir p2ir

ttr" |</f(0)| < n! / |Log \fj(rew)\\ dO(Log(|jÇ-| +1
J0 J 0

En faisant croître indéfiniment r, on en déduit que <j)jn\0) — 0 pour n > 3.

Les composantes de <fi sont bien quadratiques.
La deuxième étape consiste à voir que les composantes de <ß sont en fait

affines. Pour cela, revenons aux coordonnées homogènes :

/ [e^ : : e^+1] avec deg(</>;) < 2

Il s'agit de montrer que ßi — ßj est affine pour toute paire d'indices. Convenons

que i équivaut à j si c'est le cas pour la paire {ij}. La remarque cruciale

est la suivante:

Soit Yij {z | \zi\ \zj\ > \zi\ pour tout 1} (cf. §3). Si f~l(Yij) n'est

pas compact, alors i équivaut à j.
En effet, on peut alors trouver an tendant vers l'infini avec f(an) tendant

vers b dans Ytj. Quitte à extraire, on peut supposer la suite (f(z + an))

localement uniformément convergente par le théorème d'Ascoli puisque la
dérivée de / est uniformément bornée. Il en est de même pour la suite des

dérivées en 0 de la z'-ième composante de (f(z + an)) dans la carte (zj 1),
donc

(fi/fj)\an) (</>&„) - <ß'j(an))Ulfj)(an))

converge.
Or (fi/fj)(an) tend vers b[/bj 0. Ainsi f'faf) — (f)j(an) doit converger

alors que </>• — </>j est affine et que an tend vers l'infini. Ceci force 0- — <fij à

être constant et i équivaut à j.

Cette remarque permet de conclure : en effet, elle entraîne que le maximum
des modules des composantes de / est réalisé par des composantes d'indices

équivalents (par exemple à 1) hors d'un compact de C. On aura ainsi, pour
tout i :

Re(^)(z) < Re(^)(z) +
Donc cj)i— 4>iest affine pour tout i.
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