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SUR L’HYPERBOLICITE DE CERTAINS COMPLEMENTAIRES

par Frangois BERTELOOT et Julien DUVAL

RESUME. Nous donnons, dans ’esprit de 1’argument de Ros pour le théoreme
de Picard, une preuve nouvelle et directe de I’hyperbolicité de deux complémentaires
d’hypersurfaces de 1’espace projectif: celui de 2k-+ 1 hyperplans en position générale
dans P¥(C), ainsi que celui d’une courbe 2 3 composantes, générique, de degré au
moins 5 dans P*(C).

0. INTRODUCTION

Une partie de I’espace projectif P*(C) est hyperbolique si elle ne contient
pas de courbe entiere non constante, i.e. d’image holomorphe non constante
de C.

L’ objet de cet article est de donner une nouvelle démonstration, élémentaire,
de I’hyperbolicité de deux exemples classiques de complémentaires d’hyper-
surfaces projectives :

— dans P¥(C), le complémentaire de 2k + 1 hyperplans en position générale
(Green [8]);

. —dans P*(C), le complémentaire d’une courbe 2 trois composantes, générique,

de degré > 5 (Grauert [7] pour trois coniques, Dethloff-Schumacher-Wong
[S], [6] si aucune des trois composantes n’est une droite).

Ces exemples s’inscrivent dans le cadre de la conjecture de Kobayashi
(voir [5] par exemple) pour les complémentaires :

CONJECTURE. Une hypersurface a p composantes, générique, de degré
>2k+ 1 de P*(C) a un complémentaire hyperbolique.
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Notons ‘au passage les progres récents (voir [11] et [4]) dans le cas bien
plus difficile que ceux traités ici du complémentaire d’une courbe irréductible
dans P%(C).

Les démonstrations connues de ’hyperbolicité des deux exemples qui nous
intéressent reposent sur des techniques de distribution des valeurs (lemme de
Borel [2]) ou de métriques de jets a courbure négative (voir [9] comme
référence générale).

La démarche directe proposée ici s’inspire de la démonstration de Ros du
théoreme de Picard. L’ingrédient principal en est le lemme de Zalcman-Brody
[12], [3] qui permet d’extraire d’une suite de courbes entieres non constantes
une sous-suite qui converge apres reparamétrage vers une courbe entiere non
constante.

Voici I’argument de Ros tel qu’il est exposé par Zalcman dans [13]:

Soit f holomorphe non constante de C dans P!(C) évitant 0,1 et co.
Ses racines n-ieémes f1/" évitent de plus en plus de points sur le cercle unité.
Quitte a reparamétrer, elles convergent apres extraction vers une fonction
entiere non constante qui évite maintenant tout le cercle unité. Elle est a
valeurs dans le disque unité ou son complémentaire, ce qui contredit le
théoreme de Liouville. [

Cette démonstration s’adapte bien au résultat de Green. La seule modifi-
cation consiste a faire jouer le méme rdle aux hyperplans omis grace a un
plongement adéquat de P¥(C) dans P*(C). L’énoncé se réduit par le méme
usage de racines n-iemes et passage a la limite a I’hyperbolicité d’un certain
polyédre dans P%(C). Celle-ci résulte alors du théoréme de Liouville.

La démonstration de Ros peut aussi s’interpréter comme une « linéarisation »
des courbes entieres de C* :

-

Soit f holomorphe non constante de C dans C*. Alors il existe une suite
de reparamétrages a la source (r,) telle que f o r, converge vers e.

En effet, on trouve par le lemme de Zalcman-Brody des reparamétrages s,
tels que /" os, converge aprés extraction vers ¢ de C dans C*. L’image
de ¢ doit rencontrer le cercle unité en une valeur non complétement critique
donc, quitte a reparamétrer, on a:

d(z) = (1 + 2+ 0).

Ainsi fos,(z/n) équivaut a e (1+z/n)" qui tend vers €* aprés extraction. []




SUR L’HYPERBOLICITE DE CERTAINS COMPLEMENTAIRES 255

Cet énoncé de linéarisation se généralise bien aux courbes enticres de
(C*)*. En particulier, toute courbe entiére non constante dans (C*)*> possede
une limite (au sens de limite d’une suite de courbes construites en reparamétrant
la courbe initiale) qui est feuille d’un feuilletage linéaire de P2(C).

Le cas du complémentaire d’une courbe C a trois composantes en découle
de la maniére suivante: notons d’abord que P?*(C)\ C est un revétement
ramifié de (C*)? du fait des trois composantes de C. L’idée est maintenant
de remplacer une courbe entiere non constante dans P2(C)\ C par une de ses
limites feuille d’un feuilletage holomorphe de P?(C). Ce feuilletage s’obtient
par ce qui préceéde comme 1’image réciproque par le revétement ramifi€ d’un
feuilletage linéaire de P?(C). On montre ensuite que cette feuille limite
doit étre algébrique en analysant l’intersection d’une feuille transcendante
du feuilletage avec le lieu de ramification du revétement. Elle est donc tracée
sur une courbe rationnelle ne coupant C qu’en deux points. C’est une situation
non générique. [

Voici le plan de ce texte: apres des préliminaires sur I’hyperbolicité, le
second paragraphe traite du théoreme de Green tandis que la linéarisation des
courbes entieres de (C*)* fait I’objet du troisiéme. Le quatriéme paragraphe
est consacré au complémentaire des courbes 2 trois composantes dans P?(C).
Enfin un appendice explicite les courbes de Brody dans (C*)*, apportant un
autre €clairage sur 1’énoncé de linéarisation.

1. PRELIMINAIRES
Notre référence générale pour I’hyperbolicité est la monographie [9].

DEFINITION.  Soit X une variété complexe. Une partic A de X est
hyperbolique si elle ne contient pas de courbe entiére non constante : il n’existe

pas d’application holomorphe non constante de C dans X d’image contenue
dans A.

Les premiers exemples proviennent du théoréme de Liouville:

| EXEMPLE. Le complémentaire d’un voisinage d’une hypersurface projec-
B tive de PX(C) est hyperbolique.
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En effet un plongement de Veronese envoie ce complémentaire dans un
borné de CV. Ainsi I’adhérence de toute courbe entiére non constante de
P“(C) coupe toute hypersurface projective.

On produit d’autres exemples par la propriété suivante qui résulte du
relevement des homotopies pour un revétement :

INVARIANCE PAR REVETEMENT. Soient X une variété complexe et Y un
revétement non ramifié¢ de X. Alors X est hyperbolique si et seulement si Y
Iest.

On obtient ainsi ’hyperbolicité des surfaces de Riemann hyperboliques au
sens traditionnel, 1.e. celles dont le revétement universel est le disque unité D.

L’outil de base de ce qui va suivre est le lemme de reparamétrisation
suivant, dii & Zalcman [12] pour X = P!(C) et a Brody [3] en général (voir
aussi [9], chap. 3).

LEMME. Soient X une variété compacte complexe (munie d’une métrique
hermitienne) et (f,) une suite d’applications holomorphes du disque unité
dans X. On suppose que || f,(0)|| tend vers I’infini. Alors il existe une suite
de reparamétrages (r,) de C convergeant vers O pour laquelle f, or, tend
(uniformément sur les compacts) vers une application entiere non constante
¢ de C dans X apres extraction d’une sous-suite.

De plus ¢ est a dérivée bornée.

REMARQUE. Dans le contexte, ce lemme fait habituellement le lien entre
hyperbolicité et hyperbolicité au sens de Kobayashi, i.e. la non dégénérescence
de la pseudométrique donnée par .

K(x,v) =inf{1/r, r > 0| 3f: D — C holomorphe avec f(0)=x, f'(0)=rv},

ol x est un point de X et v un vecteur tangent. Les complémentaires dans
ce texte seront ainsi hyperboliques complets et plongés hyperboliquement au
sens de Kobayashi (cf. [9]).

CONSEQUENCE. Soient X une variété compacte complexe et f,: C — X
une suite de courbes entieres non constantes. Il existe une suite de
reparamétrages (r,) a la source telle que f, or, converge vers une courbe
entiere non constante apres extraction.
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En voici une traduction directe:

OUVERTURE. Soit X une variété compacte complexe et F un fermé
hyperbolique dans X. Alors F posséde un voisinage hyperbolique.

Sinon on créerait, a partir d’'une base dénombrable de voisinages non
hyperboliques de F, une suite de courbes entieres non constantes convergeant,
aprés extraction et reparamétrage, vers une courbe entiere non constante
contenue dans F.

2. LE THEOREME DE GREEN

Voici comment on peut adapter 1’argument de Ros pour montrer la généra-
lisation suivante du théoréme de Picard (due a Green [8]):

THEOREME. L’espace projectif P¥(C) privé de 2k + 1 hyperplans en
position générale est hyperbolique.

( Ici, «€étre en position générale» signifie que k+ 1 de ces hyperplans n’ont
. pas d’intersection commune.

Démonstration. Plongeons P¥(C) dans P?*(C) en envoyant les hyperplans
évités d’équation {/; = 0} dans les hyperplans de coordonnées de P?(C) par

¢=1Ih:...: b1l

- d’image notée P. Si A est une partie de P%*(C), on notera A* le complémen-
taire dans A des hyperplans de coordonnées. On veut donc montrer 1’hyper-
' bolicité de P*.

 Par position générale, P évite un voisinage des points de P*(C) ayant
~ k+ 1 coordonnées nulles. Autrement dit, P est contenu dans

Xe ={z, |z| > €||z]| pour au moins k+ 1 coordonnées}

ol |zl =max {|z1],...,|zr1]} et € est assez petit.

I suffit donc de voir I’hyperbolicité de X*. Mais la puissance n-iéme
| (z+ ") induit un revétement non ramifié de X%, sur X! et X,/ converge
 vers X en distance de Hausdorff.
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Comme -I’hyperbolicité est une propriété ouverte et stable par revétement
(cf. §1), tout se réduit & montrer le

LEMME. Le polyédre
X1 =A{z, |z| = z|| pour au moins k+ 1 coordonnées}
est hyperbolique.

Démonstration. Soit f de C dans P?*(C) une courbe entiére contenue
dans X;. Elle doit «passer du temps» dans une de ses faces X; =
{z, |zl =|lzll, ieI} ou I est une partic de {1,...,2k+ 1} de cardinal
k + 1. Par exemple, on peut supposer f ‘I(X{l,._‘,kﬂ}) d’intérieur non vide.
Autrement dit, si f = [f; : ... : fuy1], on aura par prolongement analytique
|fil =+ = | fx1] sur tout C. Comme I’image de f est contenue dans X et
que toute partie de {1,...,2k + 1} de cardinal k+1 rencontre {1,...,k+1},
il s’ensuit que || f|| = [fi| sur tout C. Donc, pour tout i, |f;|/|fi| est bornée
par 1 sur C et f est constante par le théoréme de Liouville.  []

REMARQUE. La méme démonstration s’applique au résultat de Babets [1]
sur I’hyperbolicité de P*(C) privé de 2k+1 hypersurfaces en position générale.

3. LINEARISATION DES COURBES ENTIERES DANS (C*)F

On décrit dans ce paragraphe les limites les plus simples des courbes
entieres dans PX(C) privé de k + 1 hyperplans en position générale, donc
dans (C*)t.

DEFINITION.  Soit £ de C dans P*¥(C) une courbe entiere non constante.
Une limite de f est une courbe entiére non constante g de C dans P*(C)
obtenue comme limite (uniforme sur les compacts de C) de (for,) o (rn)
est une suite de reparamétrages a la source.

E Les propriétés suivantes se vérifient facilement:
a) une limite d’une limite g de f en est encore une pour f;

b) si une courbe entiere évite une hypersurface dans P*(C), ses limites
€vitent encore cette hypersurface ou y sont contenues.
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THEOREME. Soit f: C — P¥(C) une courbe entiére non constante évitant
k+ 1 hyperplans en position générale qu’on choisit commme les hyperplans
de coordonnées. Alors [ posséde une limite exponentielle non constante de
la forme :

9() = [ce™] :=[c1 €M% ... crp1 %], ¢, 0 dans C.

Démonstration. En voici le schéma: comme plus haut on extrait les racines
n-iemes f1/" de f que I’on reparamétre de sorte que f'/"or, converge vers ¢
entiere non constante. L’idée est maintenant d’exploiter le fait que (for,) ne
peut &tre normale car proche de (¢"). On la renormalise prés d’une intersection
entre I'image de ¢ et le lieu de non-normalité des puissances n-iémes pour
créer la limite exponentielle voulue.

Plus précisément, notons Y ce lieu ol la famille (z = Z") n’est pas
normale. C’est un polyédre constitué des faces

Yy ={z, |z|=z|> |z, pour tout 7} .

Son complémentaire consiste en k -+ 1 polydisques ouverts
Ui={z, |lz|>|al, 1#i}.

Pour simplifier la discussion, supposons les composantes de ¢ distinctes
en module. Remarquons que la courbe entiere ¢(C) rencontre Y : en fait, la
- préimage ¢~ (Y) sépare C, sinon la courbe serait enticrement contenue dans
un des polydisques fermés U; qui sont hyperboliques.

Comme |¢;] # [¢;|, on doit avoir (¢;/¢;) # 0 sur ¢~ (¥;) hors de points
1solés. Autrement dit, la courbe @(C) est transverse A toutes les faces de Y
en une intersection générique.

On se place au voisinage A d’un tel point générique dans ¢~1(Y), par
~exemple 0 aprés translation. Son image ¢(A) est transverse 3 Y. Il en est de
méme avant la limite pour f,(A) ol f, = f/"or,. On peut donc supposer
- apres translation que f,(0) est dans Y, par exemple dans le bord du polydisque
unité U = Uy, de la carte (zk+1 = 1), et que sa puissance n-ieme converge
. vers c¢, quitte a extraire.

‘ Relevons ¢ et f, dans cette carte via I'exponentielle en posant ¢ = ¥
et fu = e¥ ou 4, converge vers Y. Ainsi 1, converge vers 1/, puis
- n(Yn(z/n) — 1¥,(0)) vers az localement uniformément, ot o = Y’ (0).

Donc f o ru(z/n) = (f)"(0)e"@n@/m=4O) tend vers la limite voulue
9(z) = ce®*. Celle-ci n’est pas constante: en effet ¢(0) est dans 1’une des
- faces du bord de U par exemple Yy ;. La transversalité de la courbe ?(C)
~ a cette face se traduit par ¢/(0) £ 0 d’ou a; #0.
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Le cas général se discute de maniére analogue en groupant les composantes
de ¢ identiques en module. Ainsi on ne retiendra par exemple de Y que les

faces Yy pour |¢;| # |¢;|. [

REMARQUES.

1) On peut supposer de plus « réel dans la limite exponentielle g. Si
ce n’est pas le cas, voici comment construire une limite de ¢ (et donc
de f) satisfaisant cette propriété: considérons 1’enveloppe convexe des «;
significatifs (ceux correspondant a des coefficients ¢; # 0) dans 1’écriture
de g; quitte a reparamétrer g, on suppose cette enveloppe contenue dans le
demi-plan supérieur avec une aréte réelle: par exemple «; réel pour i < p et
Im(ay) > 0 pour i > p; de g(z+ in) = [/ ce®*] on extrait une sous-suite
convergeant vers h(z) = [c1e®*:...:c,e®*:0:...:0] qui convient.

2) Ce théoreme contient celui de Green: en effet, soit f(C) une courbe
entiere non constante dans P¥(C) omettant 2k + 1 hyperplans en position
générale, d’équations (; = 0). En considérant @ = [[; : ... : Iy4q]
le plongement correspondant dans P%*(C), la courbe entitre @ o f évite
maintenant les hyperplans de coordonnées. Elle possede une limite de la forme
suivante, quitte a permuter et prendre des multiples des formes linéaires /; :

g)=1[e*:...:e**:0:...:0] avec a; =0y ssi i<p.

Par position générale, chacune des formes linéaires /; est toujours combi-
naison de k4 1 autres; il en est donc de méme pour les composantes de D.
Ceci entraine que p < k: sinon toute composante de g serait proportionnelle
a e“'* et g serait constante. Mais, d’un autre cOté, la premiere composante

de g doit étre combinaison des k + 1 dernieres, soit:

€Mt = g et

i>k+1

Or on a dans cette égalité «; # a; puisque p < k. C’est impossible.

4. COMPLEMENTAIRE D’UNE COURBE A TROIS COMPOSANTES DANS P?(C)

Nous appliquons ce qui précéde a I’étude de I’hyperbolicité du complé-
mentaire de trois courbes dans P?(C) (comparer avec [5], [6]).

|
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THEOREME. Le plan projectif privé d’une courbe C a 3 composantes,
générique, de degré au moins 5, est hyperbolique.

Ici la généricité signifie d’une part que les composantes C; de C sont lisses
et se coupent transversalement, d’autre part que I’on élimine les obstructions
évidentes a ’hyperbolicité du complémentaire de C, les cas ou une courbe
rationnelle ne rencontre C qu’en deux points. Plus précisément on exclut:

— une tangente & C passant par deux points doubles,

— une bitangente ou une tangente d’inflexion a C passant par un point
double,

— une conique ne rencontrant C qu’en deux points.

Le dernier cas n’arrive que si I'une des composantes de C, par exemple
Cs, est une droite. La conique coupe C3 en deux points qui sont aussi sur
C1 U C, et y posséde un contact d’ordre au moins 8 avec C; U C;.

On vérifie que toutes ces situations forment un diviseur dans 1’espace des
courbes a 3 composantes de degré fixé. C’est donc une généricité au sens de
Zariski.

Démonstration du théoréeme. Elle procede par contradiction et consiste en
deux étapes: construire, a partir d’une courbe entiere évitant C, une limite
qui dégénere algébriquement; puis discuter les courbes algébriques rencontrant
peu C pour tomber sur une situation non générique.

La premiere étape provient de I’utilisation du résultat du paragraphe
précédent aprés avoir projeté P?(C) \ C dans (C*)? grice aux trois com-
posantes. On en déduit une limite évitant C qui se projette comme feuille
d’un feuilletage linéaire de (C*)>. Ceci va forcer la rationalité des pentes de
ce feuilletage et donc 1’algébricité de la limite.

La deuxieme étape, classique, utilise systématiquement le théoreme de
Bézout et la formule du genre pour des courbes a singularités simples.

a) Le cadre. Soit (P; = 0) I’équation (de degré d;) de la courbe C;. Notons
F: P*(C) — P%(C) I’endomorphisme holomorphe de degré d = ppem(d;, dy, d3)
défini par

F(z) = [P1(2)™ : P2(2)™ : P3(2)™], avec m;d; =d. .

Par construction, F envoie le complémentaire de C dans (C*)?. Son lieu
critique consiste en les courbes C; avec multiplicité m; — 1 et une courbe D

de degré d; +d, +dsz — 3. Remarquons que D évite les points doubles de C
du fait de leur transversalité.
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Soit maintenant une courbe entiére non constante f: C — P?(C) évitant
C. Comme Fof omet les axes de coordonnées, elle posséde une limite
exponentielle non constante de la forme h(z) = [c1e™? : cpe® : c3¢™3¢] avec
a; réel (cf. §3).

Remarquons qu’une limite de Fof se releve toujours via F en une limite
de f. En effet, si Fofor, tend vers h, alors for, doit &re normale. Sinon
sa renormalisation donnerait une courbe entiére non constante dans une fibre
de F. Donc, quitte a extraire, f o r, converge vers g avec F o g=nh.

En particulier, #(C) n’est pas contenue dans 1’un des axes de coordonnées.
Sinon g(C) serait tracée sur une des composantes de C, par exemple C;
et éviterait les deux autres. Or, pour des raisons de degré, le cardinal de
C1 N (C2 UC3) est au moins 3. Ceci est impossible car une courbe algébrique
privée de 3 points est hyperbolique.

Ainsi, quitte a reparamétrer f et prendre des multiples des équations P;,
on aura h(z) = (¢%,¢%*) dans une carte de P%(C).

b) Absence de limites transcendantes. Montrons que les adhérences h(C)
et g(C) sont algébriques. Il suffit pour cela de voir que o est rationnel.
Supposons le contraire.

La courbe entiecre A(C) est alors l'une des feuilles complexes de
I’hypersurface réelle Levi-plate H d’équation (|y| = |x|®) dans (C*)?. Les
autres feuilles complexes sont clairement des limites de 4 et donc de Fof.
Ainsi I’adhérence de g(C) dans P?(C) \ C est feuilletée par des limites de
g, donc de f, relevant via F les feuilles complexes de H.

La contradiction va venir d’une discussion de la position de ¢g(C) par
rapport a D, le lieu critique de la restriction de F au complémentaire de C.

Du fait de notre latitude de choix de A(C) parmi l’infinité de feuilles
complexes de H, on peut supposer que A(C) ne coupe F(D) qu’en des
valeurs régulieres de F|p, de plus transversalement. En effet,, les valeurs
singulieres de F|p ainsi que les tangences de F(D) aux feuilles complexes
de H sont en nombre fini, puisque ces feuilles sont transcendantes et F(D)
algébrique.

Alors g(C) doit éviter D : sinon la différentielle D,(F) en un point
d’intersection de g(C) avec D aurait une image contenant les tangentes 2
F(D) et h(C) en F(p); elle serait de rang maximal.

Il en est de méme pour les limites non constantes de g : sinon 1’une d’entre
elles serait contenue dans D \ C qui est hyperbolique.

Ainsi ’adhérence g(C) omet D puisqu’elle est feuilletée dans P2(C) \ C
par des limites de g et que F~!(H) ne rencontre C qu’en ses points doubles,
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soit hors de D. Donc g(C) est contenu dans le complémentaire d’un voisinage
de D dans P*(C) qui est hyperbolique (cf. §1), d’ol la contradiction.

¢) Discussion des limites algébriques. Par ce qui précede, la courbe
enticre g(C) est contenue dans une composante irréductible T de degré ¢
d’une courbe algébrique d’équation (aprés permutation des composantes de C):

) (P =PP) avec pgced(ng,ny) =1
ou

ii) (PY'PY =P7) avec pged(ng,ny,n3) = 1.

Notons que I' ne rencontre C qu’en deux points exactement, toujours car
une courbe privée de 3 points est hyperbolique. Plus précisément, si I" est
singuliére en un de ces points, cette singularité doit étre irréductible, comme
on le constate en passant & la normalisation.

Montrons qu’aucune de ces possibilités n’est générique :

CAs i) Notons I'NC = {p, ¢} avec p dans CiNG;, et g dans G5\ (C1UC,).
D’apres 1’équation i), T a en p une multiplicité d’intersection n; avec C, et
ny avec C;. Comme p est I’unique intersection de T" avec Ci et Cy, On en
déduit par le théoreme de Bézout que 0 divise n; et ny. Ainsi 6 =1 et T
est une droite. Comme cette droite coupe C; avec multiplicité¢ d; (en p pour
i=1,2, en g pour i = 3) avec d, +d, +d; > 5, elle doit étre une bitangente
ou une tangente d’inflexion a C passant par le point double p.

CAS ii) Notons cette fois I'N C = {p1, P2} avec p; dans C;NGCs.

— Supposons d’abord T non singuliere. Elle doit étre rationnelle car
I'\ {p1,p2} n’est pas hyperbolique. C’est donc une droite ou une conique.

Dans le premier cas, I" est une tangente a C passant par les deux points
doubles p; et p,. Sinon elle serait transverse a C en p; et p, et le théoréme
de Bézout imposerait d; = d, = 1, dz = 2 contredisant I’hypothése sur le
degré de C.

Dans le second cas, la conique I" posséde un contact d’ordre 2d; avec
Ci en p; pour i = 1,2 toujours par Bézout. Elle est donc transverse a Cs
en p; et p,. L'intersection totale de T" avec C3 vaut 2 et C; doit étre une

droite. Ainsi d; +d, > 4 et 1a conique I" a un contact d’ordre 8§ ag moins
avec C; U C,.
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— Analysons le cas singulier. Prés de p;, la courbe I' a une équation
locale de la forme (x'" = y%) avec pgcd(r;,s;) = 1 puisque la singularité y
est irréductible. Ici (x = 0) est une équation locale de C; et (y=0) de Cs.

Comme plus haut, le calcul des multiplicités d’intersection et le théoréme
de Bézout donnent:

(1) 0 =s1/di =s2/dy =11/d5 + 1y /d5,
qui implique
2) (0—=D0-2)=(r1/ds — 1)(s1/dy — 1) + (ry/d3 — 1)(s3/dr — 1).

Par ailleurs, la formule du genre pour une courbe irréductible de genre g,
de degré § et possédant un certain nombre de singularités irréductibles de la
forme (x'" = y*) s’écrit (cf. par exemple [10]):

20 <@ -1DE-2) =) (ni—Disi — D),

I'inégalité provenant de la présence éventuelle d’autres singularités. Dans notre
cas, on en déduit:

3) O=1D0—=2)2 1= D1 =D+ (2 — D(s2 — 1).

La comparaison de (2) et (3) impose 1’égalité terme a terme des seconds
membres; en particulier I' est non singuliere hors de p; et p,. On obtient:

(ri—D(@s1=1) = (r/ds=1)(s1/d1—1), (rn—1)(s—1) = (rz/d3—1)(82/d2—1)-

Comme I' est singulicre, I'une de ces égalités — par exemple la premiére —
est non nulle. Ceci entraine d; = ds =1 (C; et Cz sont des droites ) et donc
dy > 3. On en déduit que la deuxiéme égalité doit étre nulle, soit r, = 1.
D’apres (1), on obtient § = sy = r; + 1. Autrement dit, la seule singularité
de T est du type (x°~! =) avec 6 > 3 en p;.

Ceci va imposer la présence d’une tangente d’inflexion a2 C, en p,: en
effet, soit (L = 0) I’équation de la tangente & I" en p, et I'y la courbe
d’équation (Pf_lL = /\Pg). On choisit A de sorte que I" et I'y coincident. Il
suffit pour cela de fixer A pour avoir un contact d’ordre au moins 9> — 1 en
p1 entre T" et I'y. Comme, par construction, I" et I'y sont déja tangentes en
P2, elles doivent coincider par Bézout. Ainsi la tangente & T’ en p, est une
tangente d’inflexion car c’en est une pour I')y puisque § > 3. C’en est une
aussi pour Cp puisque I' et C, y ont un contact important (d’ordre dd,).

En conclusion, aucun de ces cas de figure n’est générique, ce qui achéve
la démonstration du théoreme. [J
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REMARQUE. On construit facilement des exemples de courbes C a trois
composantes de degré 5 dont le complémentaire n’est pas hyperbolique a
cause d’une droite ne coupant C qu’en 2 points. En voici deux, présentés
en coordonnées affines, ot 1’obstruction I' est une conique ou une cubique
rationnelle ne rencontrant C qu’en 2 points. .

a) C est I’'union des deux paraboles d’équation (£2x = y> —2) et de I’axe
des x. Le cercle T' d’équation (x> +y* = 1) a des contacts d’ordre 4 avec
les paraboles en leurs sommets situés sur I’axe des x.

b) C est 'union de la cubique d’équation (y* = x* + x), de I’axe des x
et de la droite a l'infini. La cubique rationnelle I" d’équation (x = y®) a son
point de rebroussement 2 'infini au point de rencontre des deux droites et
un contact d’ordre 9 avec la cubique de C en l’origine, également sur 1’axe
des x.

5. APPENDICE. COURBES DE BRODY DANS (C*)*

Le théoréme du paragraphe 3 est aussi conséquence de la description des
courbes de Brody dans (C*)*.

DEFINITION. Une courbe entiére f: C — P¥(C) est dite de Brody si

|/l < 1, la dérivée étant mesurée dans les métriques usuelles de C et
PX(C).

Toute courbe entiere possede une limite de Brody, précisément par le
lemme de Brody (cf. §1). Celles contenues dans (C*)* sont trés simples :

THEOREME. Les seules courbes de Brody f: C — PKC) évitant les
hyperplans de coordonnées sont de la forme

f(z) = [ce™] :=[c1e™* : ... cpp1€M'7], ¢, ap dans C.

Démonstration. Ecrivons f = ¢ dans une carte de P%(C), par exemple
(Zk+1 = 1).

La premiere €tape, classique (voir [5]), montre que les composantes de
¢ sont quadratiques. L’argument remonte aux origines de la théorie de
Nevanlinna. La propriété d’étre de Brody pour f se traduit directement
par la surharmonicité de Log(l + |fi]* + ...+ | fil) = z|°. Les moyennes
de Log(l + [A]° + ...+ |/i|®) sur les cercles de centre 0 et de rayon r
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croissent ainsi au plus quadratiquement en r. Il en est de méme pour celles
de Log(1 +’|j}|2), donc de Log(|f| + |]§-|‘1) puisque Log|f;| = Re(¢;) est
harmonique. Or le développement en série enticre de ¢; donne:

2
" ¢ (0) = n! / Re ¢;(re®)e™" do,
0
d’ou

2w 2m
" [ ¢ (0)] < n!/ [Log | £i(re®)|| d6 < n!
0 0

Log(|fi|+ £~ N(re®) do.

En faisant croitre indéfiniment r, on en déduit que qu(-”) (0) =0 pour n > 3.
Les composantes de ¢ sont bien quadratiques.

La deuxieme étape consiste a voir que les composantes de ¢ sont en fait
affines. Pour cela, revenons aux coordonnées homogenes :

f=1[e? :...:eP*] avec deg(¢;) <2 .

Il s’agit de montrer que ¢; — ¢; est affine pour toute paire d’indices. Convenons
g q j p p

que i équivaut a j si c’est le cas pour la paire {i,j}. La remarque cruciale

est la suivante:

Soit Yy = {z | |z| = |zj| > |zl pour tout 1} (cf. §3). Si f~'(¥y) n’est
pas compact, alors i équivaut a j.

En effet, on peut alors trouver a, tendant vers l’infini avec f(a,) tendant
vers b dans Y;. Quitte a extraire, on peut supposer la suite (f(z + a,))
localement uniformément convergente par le théoreme d’Ascoli puisque la
dérivée de f est uniformément bornée. Il en est de méme pour la suite des
dérivées en O de la i-ieme composante de (f(z+ a,)) dans la carte (z; = 1),
donc

(fi/f) (@n) = (¢i(an) — ¢J/'(Cln))((ﬁ/]§')(an))
converge. .
Or (fi/f)(a,) tend vers b;/b; # 0. Ainsi ¢i(a) — ¢;(a,) doit converger

N

alors que ¢; — ¢} est affine et que a, tend vers l'infini. Ceci force ¢; —¢; a
étre constant et i équivaut a j.

Cette remarque permet de conclure: en effet, elle entraine que le maximum
des modules des composantes de f est réalisé par des composantes d’indices
équivalents (par exemple a 1) hors d’un compact de C. On aura ainsi, pour
tout i:

Re(¢:)(z) < Re(¢1)(z) + O(|z).

Donc ¢; — ¢ est affine pour tout i. [




. J. Duval

G 2.

SUR L’HYPERBOLICITE DE CERTAINS COMPLEMENTAIRES 267

REFERENCES

[1] BABETS, V.A. Theorems of Picard type for holomorphic mappings. Siberian
Math. J. 25 (1984), 195-200.

[2] BOREL, E. Sur les zéros des fonctions entieres. Acta Math. 20 (1897), 357 396.

[3] BRODY, R. Compact manifolds and hyperbolicity. Trans. Amer. Math. Soc. 235
(1978), 213-219.

[4] DEMAILLLY, J.-P. and J. EL GOUL. Hyperbolicity of generic surfaces of high
degree in projective 3-space. Amer. J. Math. 122 (2000), 515-546.

[5] DETHLOFF, G., G. SCHUMACHER and P.M. WONG. Hyperbolicity of the com-
plements of plane algebraic curves. Amer. J. Math. 117 (1995), 573-599.

[6] DETHLOFF, G., G. SCHUMACHER and P.M. WONG. On the hyperbolicity of the
complements of curves in algebraic surfaces, the three-component case.
Duke Math. J. 78 (1995), 193-212.

[7] GRAUERT, H. Jetmetriken und hyperbolische Geometrie. Math. Z. 200 (1989),
149-168.

[8] GREEN, M. Some Picard theorems for holomorphic maps to algebraic varieties.
Amer. J. Math. 97 (1975), 43-75.

[9] KOBAYASHI, S. Hyperbolic Complex Spaces. Grundlehren der math. Wissen-
schaften 318. Springer (1998), Berlin.

[10] MILNOR, J. Singular Points of Complex Hypersurfaces. Ann. of Math. Studies
61. Princeton University Press (1968), Princeton.

[11] SIU, Y.-T. and S.-K. YEUNG. Hyperbolicity of the complement of a generic
smooth curve of high degree in the complex projective plane. [nvent.
Math. 124 (1996), 573-618.

[12] ZALCMAN, L. A heuristic principle in complex function theory. Amer. Math.
Monthly 82 (1975), 813-817.

[13] —— Normal families: new perspectives. Bull. Amer. Math. Soc. (N.S.) 35
(1998), 215-230.

(Recu le 9 novembre 2000)

F. Berteloot

Laboratoire Emile Picard

UMR CNRS 5580

Université Paul Sabatier

F-31062 Toulouse Cedex 4

France

e-mail : berteloo@picard.ups-tlse.fr
duval @picard.ups-tlse.fr







	SUR L'HYPERBOLICITÉ DE CERTAINS COMPLÉMENTAIRES
	...
	0. Introduction
	1. Préliminaires
	2. Le théorème de Green
	3. Linéarisation des courbes entières dans $(C*)^k$
	4. Complémentaire d'une courbe à trois composantes dans $P^2(C)$
	5. Appendice. Courbes de Brody dans $(C*)^k$
	...


