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6.6 EXAMPLES

Keeping the notations of the previous section, we shall illustrate Theo-
rem 17.

a. TOTALLY GEODESIC TRANSFORM. As in Section 4.1a, let X = G/K
be a Riemannian symmetric space of the noncompact type and y, = Exp s
the origin in the dual space ¥ = G/H. By (3) we have £+ = £@s, therefore
Theorem 17 (i) applies with t = s, the orthogonal of s in p.

b. HOROCYCLE TRANSFORM. Again X = G/K is a Riemannian symmet-
ric space of the noncompact type (see Notations, d), but the dual space 1S now
the space of horocycles ¥ = G/MN. We recall Harish-Chandra’s 1somorphism
of algebras ([9], p.306)

I': DX) — DA,

where D(A)Y is the subalgebra of W -invariant differential operators in D(A).
The definition of T" will be recalled during the next proof.

PROPOSITION 18. Given v € C°(Y), the Junction of x = gK and a € A
given by

w(x,a) = a’Riv(x) = ap/ v(gkaN) dk
K

is a solution of the system of multitemporal wave equations
Puyw(x,a) = T(P)pw(x,a), P e DX),xeX,acA.
Proof.  Theorem 17 (ii) applies here with 7 —= A, the abelian subgroup

from the Iwasawa decomposition G = KAN ; indeed E+h=t+m+n==tpn,
and g = ®n)da, [a,h] C [a,m]+ [a,n] CnCHh. By (31) we thus have

(32) PR v(x) = Déa)RZU(x) ,
where D € D(G)X is related to P by (28) and D’ € D(A) was characterized by
(33) D — D' € ¢D(G) + D(G)n.

To compare D’ and T'(P) we recall that I'(P) =a=PD,oa”, where D, € D(A)
is characterized by

(34) D — D, € nD(G) + D(G)E .

| Moreover (Df)(a) = Dy(f(a)) for a € A, if f € C*®(G) is such that

I
»
i

f(ngk) = f(g) for any g G, k€K, ne N ([9], p. 302 sq.).
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Taking u € D(G) we have, by a classical integral formula,

(35) / Df(g) - u(g)dg = / Df(a) - u(nak) a=**dn da dk
G NXAXK

- / D, f(a) - u(nak)a™*dnda dk .
NXAXK

On the other hand, this integral can be written with the transpose operator
'D as

/G Df(g) - ulg) dg = /G £(g)'Du(g) dg
= / f(a)ya=* da / ("Du) (nak) dn dk .
A NxK

But ‘D € D(G)X therefore, for any ¢ € G,

/ (tDu) (ngk) dn dk = (f D) ( / u(ngk) dn dk) .
NxK @\ Sk

The latter integral, as a function of g, is left N-invariant and right K -invariant
so that

/ (tDu) (nak) dn dk = (’ D)a ( / u(nak) dn dk) :
NxK NxK

Since (‘D) =" (D’) obviously by (33) and (34), we obtain

/ Df(g) - u(g)dg = / D'(f(a)a~ ") da / u(nak) dn dk
G NxK

A

— / (azpD’ o a_zf’)f(a) - u(nak) a~*dnda dk
NXAXK

for any f € C*°(A) and any u € D(G). Comparing with (35) it follows that
Dy, =a**D' oa™%, D =a PT(P)oa”,

whence the result by (32). [

A slightly different proof can be obtained by decomposing the wave
a’R;v(gK) into elementary horocycle waves as follows. For ¢ € G we
denote by A(g) € A the A-component of g in the Iwasawa decompositions
G = NAK = ANK (we recall that A normalizes N), and by K(g) € K its
K -component in the decompositions G = KAN = KNA.
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PROPOSITION 19. (i) Given f € C*®°(A) and k € K, the function
w(gK,a) = a”*f(AKk™ " g)a)
is a solution of the system of multitemporal wave equations
Ppyw(x,a) =T(P)gwx,a), PeDX), x¢c X, acA.

(i) Given v € C®(Y), the function of x = gK and a € A given by

apR;“v(gK):/apv(gkaN)dk
K

is a solution of the same equations.

REMARKS. Part (i) is Proposition 8.5 in [12], p.118. Note that, k
being fixed, the “wave surfaces” A(k~'g) = constant are parallel horocycles
with the same normal kM € K/M (cf. [11], p.81). Indeed the equality
A(k—'g) =a, € A is equivalent to k™ 'g € a,NK, i.e. g-x, € ka, - y,.

If \ is a linear form on a and f(a) = a7, the result (i) implies that
A(k—1g)* P is, as a function of gK, an eigenfunction of all invariant operators
P € D(X) ; this is a fundamental result for harmonic analysis on X.

Part (ii) provides a simpler proof and a generalization of Proposition 8.6
in [12], p. 118, where v was the Radon transform Ru of some u € D(X).
We refer to [12] or [13] for a detailed study of those multitemporal wave
equations.

Proof of Proposition 19. (i) Both sides of the wave equation are invariant
under the action of K on X; we can therefore assume k = e. Now
w(gK,a) = a Pf(A(g)a) is left N-invariant and right K -invariant as a function
of g, and it will suffice to prove the result for g =a € A.

By the decomposition (34) of D we have, for any b € A,

D) (f(A(@)b))| ,—, = (Do) (f(ab)) = a’T(P) (a~"f(ab)) .

But I'(P) is an invariant differential operator on A, isomorphic to the additive
group of a vector space, and we obtain

D (b~"f(A(g)b)) |g:a = a’T(P) ((ab)~"f(ab))
= a’T(P)@) ((ab)~f(ab))
=T(P)) (b~"f(ab)) = T(P)w) (b Pf(A(g)D))]

Thus (i) is proved for g = a.

g=a '
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(i) Let g € G, k € K and k' = K(gk). Then gk = K'a'n’ with o’ € A
and n' € N. It follows that k~'g = a&'n’k~!, therefore o’ = Ak 1g)
and

gkaN = K'A (K'"'g) aN .

For fixed g the map k — K(gk) =k’ is a diffeomorphism of K onto itself
and, by the integral formula ([9], p. 197)

/ F(K')dk = / A g?P F(k) dK'
K K

we have

a’Ryv(gK) = a"/ v(gkaN) dk
K

= a” / v(k’A(K' " g)aN) dk
K
=a " / (AKX~ g)a)™ vk A~ g)aN) dk' .
K

By (1) applied to the functions f(a) = a*’v(k’aN), k' € K, this is a solution
of the wave equations. [

COROLLARY 20 (Helgason). If g has only one conjugacy class of Cartan
subalgebras, there exists a differential operator P € D(X) such that the
horocycle Radon transform of X = G/K is inverted by

u(x) = PR*Ru(x)

for u e DX), xe X.

We prove it here by means of shifted transforms and wave equations; see
[11], p. 116 for Helgason’s original proof.

Proof. The assumption on g implies that, in the notation of (15),
C - |c(N)|™ is a W-invariant polynomial on a*. Let P € D(X) be the
corresponding operator under the isomorphism I': D(X) — D(A)%, so that
I'(P)(i\) = C-|c(N)|~2. By Theorem 13 and Proposition 19 (i) (with v = Ru)
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we have
u(x) = (T, a”R*Ru(x)) = T(D)w (a’RiRu())|_,
= P (apRZRu(x)) fa:e = PpR*Ru(x). [
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