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6.6 Examples

Keeping the notations of the previous section, we shall illustrate Theorem

17.

a. Totally geodesic transform. As in Section 4.1a, let X G/K
be a Riemannian symmetric space of the noncompact type and y0 Exp 5
the origin in the dual space Y — G/H. By (3) we have 1?®5, therefore
Theorem 17(i) applies with t s1-, the orthogonal of 5 in p.

b. Horocycle transform. Again X G/K is a Riemannian symmetric
space of the noncompact type (see Notations, d), but the dual space is now

the space of horocycles Y — G/MN. We recall Harish-Chandra's isomorphism
of algebras ([9], p. 306)

r : D(X) —4 D(A)W

where D(A)W is the subalgebra of W-invariant differential operators in D(A).
The definition of T will be recalled during the next proof.

Proposition 18. Given v e C°°(Y), the function of x gK and ae A
given by

w(x,a) apR*v(x)=ap
Jk

is a solution of the system of multitemporal wave equations

P{x)w(x,a)r (P\a)w(x,a),Pe D(X),xeX,aeA.

Proof Theorem 17(ii) applies here with T A, the abelian subgroup
from the Iwasawa decomposition G K; indeed « + f)=«+m + n É®n,
and g (ï®n) © a, [a, 1)] c [a, m]+ [a,n] c nc f). By (31) we thus have

(32) P(x)Kv(x) D{a)R*av(x),

where DeB(G)K is related to P by (28) and D' ç D(A) was characterized by
(33) D -D'GtD(G) + D(G)n.
To compare D' and T (P)werecall that T(P) arpDaoap, where Da e D(A)
is characterized by

(34) D-DaenD(G) + D(G)8.
Moreover (Df)(a) Da(f(a)) for a GC°°(G) is such that
f(ngk) fig)formy g e G, k £ K, n N ([9], p. 302 sq.).
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Taking u G T>(G) we have, by a classical integral formula,

(35) / Df(g) u(g) dg f Df(a) • u(nak) a~2pdn da dk
J G JnxAxK

/ Daf(a) • u(nak) a~2pdn da dk.
JNNxAxK

On the other hand, this integral can be written with the transpose operator
lD as

[ Df(g) ' u(g) dg [ f(g) tDu{g) dg
Jg Jg

/ f(a) a~2pda / Du) (nak) dn dk.
Ja Jnxk

But lD G D(G)*- therefore, for any g G G,

/ Du) (ngk)dndk ('£>) / u(ngk)dndk\
JNxK K9) \JnxK J

The latter integral, as a function of g, is left TV-invariant and right K -invariant
so that

/ (*Du) (nak)dndk (*D) f u(nak)dndk]
JNxK \JnxK

Since (fD)a 1 (D') obviously by (33) and (34), we obtain

/ Df(g) • u(g) dg J Df(f(a)a~2p) da f u(nak) dn dk
Jg Ja JNxK

/ (alpDr o a~2p) f(a) • u(nak) a~2pdn da dk,
JnxAxK

for any / G C°°(A) and any u G T>(G). Comparing with (35) it follows that

Da alpD' o a~2p D' a~pT(P) o

whence the result by (32).

A slightly different proof can be obtained by decomposing the wave
apR*v(gK) into elementary horocycle waves as follows. For g G G we
denote by A(g) G A the A-component of g in the Iwasawa decompositions
G NAK ANK (we recall that A normalizes A), and by K(g) G K its

^-component in the decompositions G KAN — KNA.
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Proposition 19. (i) Given f G C°°(A) and k G K, the function

w(gK, a)

zs a solution of the system of multitemporal wave equations

P{x)w(x, a) r(P)(fl)w(*, a), P G D(X), x G X, a G A

(ii) Given v G C°°(F), f/ie function of x — gK and a G A gzven fry

apR*v(gK) f apv{gkaN)dk
Jk

is a solution of the same equations.

Remarks. Part (i) is Proposition 8.5 in [12], p. 118. Note that, k

being fixed, the "wave surfaces" A(k~lg) constant are parallel horocycles

with the same normal kM G K/M (cf. [11], p. 81). Indeed the equality

A(k~lg) a0 G A is equivalent to k~lg £ a0NK, i.e. g • x0 G ka0 • y0.

If A is a linear form on a and f(a) aiX+p, the result (i) implies that

A{krlg)iX+p is, as a function of gK, an eigenfunction of all invariant operators
P G D(X) ; this is a fundamental result for harmonic analysis on X.

Part (ii) provides a simpler proof and a generalization of Proposition 8.6

in [12], p. 118, where v was the Radon transform Ru of some u G V(X).
We refer to [12] or [13] for a detailed study of those multitemporal wave

equations.

Proof of Proposition 19. (i) Both sides of the wave equation are invariant
under the action of K on X ; we can therefore assume k e. Now

w(gK, a) a~pf(A(g)a) is left -invariant and right AT-invariant as a function
of g, and it will suffice to prove the result for g — a£ A.

By the decomposition (34) of D we have, for any b G A,

D(g) (f(A(g)b))\g=a (D„)(a) (f(a))apT(P\a)

But T(P) is an invariant differential operator on A, isomorphic to the additive

group of a vector space, and we obtain

D{g) (b-J(A(g)b))\g=a apT(P)(a) ((a

apnP\b) (0 a))r \P\b)(b~Pf(a))(b~pf(A(g)b))\g=a

Thus (i) is proved for g a.
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(ii) Let g G G, k £ K and k! K(gk). Then gk kfa'n' with a' £ A
and n' £ N. It follows that k'~lg orn'k~l, therefore a'
and

gkaN &'A (&/_1#) aN.

For fixed g the map k i—> K(gk) kf is a diffeomorphism of K onto itself
and, by the integral formula ([9], p. 197)

[ F(k') dk — [ A(k'~lg)2p F(kr) dk',
JK JK

we have

apR*v(gK) ap / v(gkaN)dk
JK

ap I v(k/A(k'~1g)aN) dk
JK

a~p [ (A(k'-lg)a)2p v(k'A(kf-lg)aN)dk'.
JK

By (i) applied to the functions f(a) a2pv(k!aN), k! G K, this is a solution
of the wave equations.

COROLLARY 20 (Helgason). If g has only one conjugacy class of Cartan
subalgebras, there exists a differential operator P e D(X) such that the
horocycle Radon transform of X G/K is inverted by

ti(x) PR*Ru(x)

for u G T>(X), x e X.

We prove it here by means of shifted transforms and wave equations ; see
[11], p. 116 for Helgason's original proof.

Proof. The assumption on g implies that, in the notation of (15),
C |c(A)|~2 is a W-invariant polynomial on a*. Let P G D(X) be the

corresponding operator under the isomorphism T: D(X) —> M(A)W, so that
T(P)(iX) C-|c(A)|~2. By Theorem 13 and Proposition 19(ii) (with v Ru)
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we have

u(x)(T<$,apR*Ru(x)) T

P(x)(,apR*aRu(xj)\a=e
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