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244 F. ROUVIERE

scalar product (T,V) =Re) T;V; on p we have (T,VA) = (T, V), A €F,
therefore st is a F-subspace of p.

An element k of KNH is characterized by k€ K and k-Exp s =Exp s,
i.e. k-s =5 (adjoint action). Let n’, d’ be the respective dimensions of p and
5 as F-vector spaces. Taking a F-basis of p according to the decomposition
p=s5@s", it follows that

K=ULF)xUwn;F), KNH=UUF) x Ud;F) x Un' —d';F).

But U(n' —d’;F) acts transitively on the unit sphere of F* ~4"  which implies
our claim.

If T,T' € s+ are two unit vectors, there exists k, € K N H such that
ko, - T =T'. Thus

R;‘Xp 70(gK) = / v (gkko exp(tD)k, 1H) dk
K

= / v (gk exp(tT)H) dk = R r0(9K) .
K

*

In particular RZ, ;v is an even function of z.

Going back to (23), we now take as (X;) an orthonormal R-basis of p
according to the decomposition p = s @ s-. The n — d basis vectors in
gt give the same contribution to the right hand side, whereas the d vectors
in s generate one parameters subgroups of H and give no contribution;
indeed exptV -Exp s =Exp s for V € s, since s is a Lie triple system by
Section 4.3 ¢. This completes the proof. [

6.5 MULTITEMPORAL WAVES

We shall now deal with general invariant differential operators. As before G
is a Lie group, H a closed subgroup, K a compact subgroup, and X = G/K,
Y =G/H.Let g, b, & be the respective Lie algebras, and t a vector subspace
of g such that

g=>FE+hDt.
Let Kj,...,K, be a basis of £, complemented by H,. .. ,H; € b so that the
K;’s and H;’s are a basis of £+ b, and let Ty,...,T, be a basis of t. We
shall use the same notations for the corresponding left-invariant vector fields
on G, e.g.
Kif(g) = asf (g eXp SKi)is:() ’

with f € C*(G), g € G, s € R. We denote by D(G) the algebra of all
left invariant differential operators on G, by D(G)X the subalgebra of right
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K -invariant operatz)?s and by D(X) the algebra of G-invariant differential
~operators on X. For s = (sy,...,s,) €R", let

i(s) = expsiTy---exps,T,.

~ We recall that, for g,t € G,

R;‘v(gK):/’v(gktH)dk.
K

| THEOREM 17. Let G be a Lie group, H,K Lie subgroups, with K compact
~and X=G/K, Y =G/H.
‘ () For any P € D(X) there exists Q(0), a constant coefficients differential

operator on R”, with order(Q) < order(P), such that for any v € C*(Y ),
x€eX,

(25) PR*v(x) = Q(On)R;yv()| _, -

(i1) Assume furthermore that t is a Lie subalgebra of g with [t,h] C b,
and let T denote the connected Lie subgroup of G with Lie algebra t. Then
for any P € D(X) there exists a right-invariant differential operator Q on T,
with order(Q) < order(P), such that

(26) PR v(x) = QpnR; v(x)

for v € C®(Y); here Py acts on the variable x € X and Qg acts on t € T.

Thus R;v(x), as a function of (x,f) € X x T, solves the generalized
“multitemporal” wave equation (26) with time variable in a multidimensional
space. Similarly (25) can be viewed as a wave equation in the variables
(x,5) € X x R" at the time s = 0.

Proof. In order to work on G rather than on its homogeneous spaces,
we define w(g) = v(gH) and, for g,t € G,

@7) Fg,1) = (R7) (gK) = / w(ght) dk,
K

so that F(gk,k'th) = F(g,t) for any k, k' € K, h € H, and

Flg,0) = (R'0) (6K) = [ wighydk.
K

Let P € D(X) be given. Since K is compact the coset space X = G/K is
reductive and there exists D € D(G)X such that ([9], p.285)
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(28) ‘ (Pf) (9K) = D) (f(9K))

for f € C*(X), g € G.
To transfer derivatives from g to ¢ we observe that, by the invariance
of D under left translation by gk and right translation by k,

D(g)w(gkt) = D(x)w(gkxt)[

where g,x,t are variables in G. Integrating over K it follows that

(29) Dg)F(g,1) = DwyF(g,x1)],_, ,

By the Poincaré-Birkhoff-Witt theorem, the differential operators
Klﬁ‘ .. -Kf”Tlo” T HY . H

(Where all exponents are positive integers) are a basis of D(G). Setting apart
the terms with 8 = v = 0, we can thus write, for some E;,F; € D(G) and
some constant coefficients a,,

p q
B0 D=D'+} KEi+) FH, D'=) aa.olf" T
i=1 j=1 @

If we replace D)y by (30) in (29), the second term (KiE,-)(x)F(g,xt)|x:e
vanishes because K; € ¢ and F(g,kxt) = F(g,t). In the third term the left
invariant vector field H; €€ h acts by

(H)wF(g,xt) = OF(g,xexp (sH;) )| _, ,

and this vanishes too whenever ¢ normalizes H, because F(g,xth) = F(g, xt).
Since ¢ = e in case (i), or t € T with Hf = tH in case (ii), we finally
obtain for both cases (in multi-index notation)

BD Dk, 0 =DyF(g,x)| _,
— Z aq 05 F(g,(expsiTy - - -exps,T,)f)
- .

= (Z aﬁ?) F(g,1(s)0)

Let the operator Q be defined by
OF (1) =)~ aad2 f(t(s)0)

s=0

S=

Y

S—=

a right invariant differential operator on the group T in case (ii). The theorem
now follows from (27), (28) and (31) in both cases (i) and (ii). ]
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