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In particular, at the origin,
@mfulx,) = (r19,) (T_l_q/Ru(t(T))>

= (O + -+ (DG + DG +3)- (g + 2k - 1) Ru(t(f))[

’? To switch over to derivatives with respect to ¢ we note that, if g(7) = f(¢)
2
w1th T = (coshp)™! =1 — 5 -+ -+ -, identification of Taylor expansions at
‘7=1, resp. t =0, leads to

<_l>" gP1)  F0)

| %Where dots are a sum of even derivatives of f multiplied by some rational
icoefﬁcients (like ay). Therefore

k

< 2m)u(x,) = (éﬁazk (@ DG +3) (g + 2k — 1)) Ru(®)|;=o ,

- for any K-invariant u € D(X), whence the claim by Section 6.2. []

6.4 THE AMUSING FORMULA GENERALIZED

a. To motivate the forthcoming generalizations of the amusing formula
(12) and their applications to Radon inversion, we briefly recall the classical
example of points and hyperplanes in the Euclidean space X = R”. Let (w, D)
be parameters for the hyperplane defined by the equation w -x = p, where w
is a unit vector, p is a real number and - is the scalar product. Given ¢ € R
and a point x € R", the parameters (w,p) = (w,?+w-x) define a hyperplane
at distance |z| from x, and

R;"v(x):/ v(w,t+ w - x)dw
Sn—~l

is the corresponding shifted dual Radon transform, where v(w,p) = v(—w, —p)
is an arbitrary smooth even function on $"~! x R. Changing w into —w in
the integral shows that R*v(x) is an even function of 7.

Since Y w? =1 it is easily checked that

(82— )’U(w t+w-x)=0

Where A, is the Euclidean Laplace operator acting on x. Thus Rfuv(x), as a
functlon of (x,7) in R” X R, is a solution of the wave equation, being an
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integral of the elementary plane waves v(w,t+ w - +x). More generally, for any
positive integer k,

(19) (87 — A RYu(x) =

For odd n we have, by Theorem 8 with n = 2k + 1, d=2k and € =0,
the following inversion formula for the Radon transform on hyperplanes

(20) Cu(x) = A*R*Ru(x) .

Putting v = Ru in (19) and observing that R* = R, we thus obtain a new
inversion formula by means of the shifted dual transform

(21) Cu(x) = 0" R Ru(x)|,—o .

Formula (21) might also be proved directly by the method of Section 6.2.

b. To extend formula (12) we first deal with the Laplace operator; general
invariant operators will be considered in the next section.

Let G be a Lie group, K a compact subgroup and let L be the Laplace
operator of the Riemannian manifold X = G/K (cf. Notations, b). The operator
L can be expressed by means of any orthonormal basis X1,...,X, of p as

Lf(gK) =) 8 f(gexp(sX)K)| _,
j=1

with f € C*3(G/K), g € G; indeed both sides are G-invariant operators on X |
which coincide at g = e.

Now let ¥ = G/H where H is a Lie subgroup of G and, as before,

R*v(gK) = / v(gkH)dk, Rfv(gK) = / v(gktH) dk
K K
for v € C*(Y) and g, € G. Then

(22) LR*v(gK) = / (Z aszv(gexp(sz)kH)'S:O)dk.
Ko

But ZXJZ is a K-invariant element in the symmetric algebra of p and it
follows that, for any ¢ € C%(p), k € K,

Z gosX Z )

s=0

|
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Therefore k can be moved to the left of expsX; in (22) and we obtain

(23) LR'() = ) O RGpov()|
J

for v € C3(Y), x € X. If hNp is a nontrivial subspace of p and the
basis (X;) contains a basis of this subspace, the sum in (23) only runs over
an orthonormal basis of the orthogonal subspace (h ﬂp)L, due to the\right
H -invariance of v.

We now give a more specific result for the geodesic Radon transform, in
the notation of Section 4.1. If 5 is a d-dimensional Lie triple system contained
in p and y, = Exp s the corresponding totally geodesic submanifold of X,
we take as Y the set of all g-y, for g € G. Then ¥ = G/H, where H is
the subgroup of all 7 € G globally preserving v, .

PROPOSITION 16. Let X be one of the classical hyperbolic spaces H"(F),
F =R, C or H. Assume s is a F-vector subspace of p and let T € p be
any unit vector orthogonal to s. For v € C*(Y), the shifted dual geodesic
transform Rg, rv is then an even function of t € R and, for x € X,

LR*v(x) = (n — d) 8t2R:xp tTU(x)lt:o

where n and d denote the real dimension of X and s respectively.

In other words, the function (x, f) — Rép rv(x) is a solution at time ¢ = 0

- of the wave operator L — (n — d)0? on X x R.

Applying the propOsition to H*(R) with d =2 we obtain formula (12).

~ Indeed, if ¢(#) is an even function of 7, let ¢ be defined by ¥(1) = ()
- with coshr = 1/7; then —%'(1) = ©"(0).

EXAMPLE. By Theorem 8 the 2-geodesic transform on X = H"(R) can

- be inverted by means of a second order differential operator :

—2m(n —2)u = (L+n — 2)R*Ru,

- and Proposition 16 now yields the inversion formula

ery —2mu = (7 + 1) Rl rRul

expt =0 ?

where u € D(X) and T € p is any unit vector orthogonal to s. Formula (24)

also follows from Theorem 14 (ii) with k — 1, ¢ =0.

Proof of Proposition 16. The point is to show that the group KN H

- acts transitively on the unit sphere of 51, the orthogonal of s in p. For the
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scalar product (T,V) =Re) T;V; on p we have (T,VA) = (T, V), A €F,
therefore st is a F-subspace of p.

An element k of KNH is characterized by k€ K and k-Exp s =Exp s,
i.e. k-s =5 (adjoint action). Let n’, d’ be the respective dimensions of p and
5 as F-vector spaces. Taking a F-basis of p according to the decomposition
p=s5@s", it follows that

K=ULF)xUwn;F), KNH=UUF) x Ud;F) x Un' —d';F).

But U(n' —d’;F) acts transitively on the unit sphere of F* ~4"  which implies
our claim.

If T,T' € s+ are two unit vectors, there exists k, € K N H such that
ko, - T =T'. Thus

R;‘Xp 70(gK) = / v (gkko exp(tD)k, 1H) dk
K

= / v (gk exp(tT)H) dk = R r0(9K) .
K

*

In particular RZ, ;v is an even function of z.

Going back to (23), we now take as (X;) an orthonormal R-basis of p
according to the decomposition p = s @ s-. The n — d basis vectors in
gt give the same contribution to the right hand side, whereas the d vectors
in s generate one parameters subgroups of H and give no contribution;
indeed exptV -Exp s =Exp s for V € s, since s is a Lie triple system by
Section 4.3 ¢. This completes the proof. [

6.5 MULTITEMPORAL WAVES

We shall now deal with general invariant differential operators. As before G
is a Lie group, H a closed subgroup, K a compact subgroup, and X = G/K,
Y =G/H.Let g, b, & be the respective Lie algebras, and t a vector subspace
of g such that

g=>FE+hDt.
Let Kj,...,K, be a basis of £, complemented by H,. .. ,H; € b so that the
K;’s and H;’s are a basis of £+ b, and let Ty,...,T, be a basis of t. We
shall use the same notations for the corresponding left-invariant vector fields
on G, e.g.
Kif(g) = asf (g eXp SKi)is:() ’

with f € C*(G), g € G, s € R. We denote by D(G) the algebra of all
left invariant differential operators on G, by D(G)X the subalgebra of right
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