| Zeitschrift:       | L'Enseignement Mathématique                               |
|--------------------|-----------------------------------------------------------|
| Herausgeber:       | Commission Internationale de l'Enseignement Mathématique  |
| Band:              | 47 (2001)                                                 |
| Heft:              | 3-4: L'ENSEIGNEMENT MATHÉMATIQUE                          |
|                    |                                                           |
|                    |                                                           |
| Artikel:           | INVERTING RADON TRANSFORMS : THE GROUP-THEORETIC APPROACH |
| Artikel:<br>Autor: |                                                           |
|                    | APPROACH                                                  |
| Autor:             | APPROACH<br>Rouvière, François                            |

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

## Download PDF: 08.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

In particular, at the origin,

$$(2\pi)^{k}u(x_{o}) = (\tau^{-1}\partial_{\tau})^{k} (\tau^{-1-q'}Ru(t(\tau)))_{\tau=1}$$
  
=  $(\partial_{\tau}^{k} + \dots + (-1)^{k}(q'+1)(q'+3)\cdots(q'+2k-1)) Ru(t(\tau))|_{\tau=1}.$ 

To switch over to derivatives with respect to t we note that, if  $g(\tau) = f(t)$ with  $\tau = (\cosh t)^{-1} = 1 - \frac{t^2}{2} + \cdots$ , identification of Taylor expansions at  $\tau = 1$ , resp. t = 0, leads to

$$\left(-\frac{1}{2}\right)^k \frac{g^{(k)}(1)}{k!} = \frac{f^{(2k)}(0)}{(2k)!} + \dots + a_k f''(0),$$

where dots are a sum of even derivatives of f multiplied by some rational coefficients (like  $a_k$ ). Therefore

$$(-2\pi)^{k}u(x_{o}) = \left(\frac{2^{k}k!}{(2k)!}\partial_{t}^{2k} + \dots + (q'+1)(q'+3)\cdots(q'+2k-1)\right)Ru(t)|_{t=0},$$

for any K-invariant  $u \in \mathcal{D}(X)$ , whence the claim by Section 6.2.

# 6.4 THE AMUSING FORMULA GENERALIZED

**a**. To motivate the forthcoming generalizations of the amusing formula (12) and their applications to Radon inversion, we briefly recall the classical example of points and hyperplanes in the Euclidean space  $X = \mathbf{R}^n$ . Let  $(\omega, p)$  be parameters for the hyperplane defined by the equation  $\omega \cdot x = p$ , where  $\omega$  is a unit vector, p is a real number and  $\cdot$  is the scalar product. Given  $t \in \mathbf{R}$  and a point  $x \in \mathbf{R}^n$ , the parameters  $(\omega, p) = (\omega, t + \omega \cdot x)$  define a hyperplane at distance |t| from x, and

$$R_t^* v(x) = \int_{S^{n-1}} v(\omega, t + \omega \cdot x) \, d\omega$$

is the corresponding shifted dual Radon transform, where  $v(\omega, p) = v(-\omega, -p)$ is an arbitrary smooth even function on  $S^{n-1} \times \mathbf{R}$ . Changing  $\omega$  into  $-\omega$  in the integral shows that  $R_t^* v(x)$  is an even function of t.

Since  $\sum \omega_i^2 = 1$  it is easily checked that

$$\left(\partial_t^2 - \Delta_x\right) v(\omega, t + \omega \cdot x) = 0,$$

where  $\Delta_x$  is the Euclidean Laplace operator acting on x. Thus  $R_t^* v(x)$ , as a function of (x, t) in  $\mathbb{R}^n \times \mathbb{R}$ , is a solution of the wave equation, being an

integral of the *elementary plane waves*  $v(\omega, t + \omega \cdot x)$ . More generally, for any positive integer k,

(19) 
$$\left(\partial_t^{2k} - \Delta_x^k\right) R_t^* v(x) = 0.$$

For odd *n* we have, by Theorem 8 with n = 2k + 1, d = 2k and  $\varepsilon = 0$ , the following inversion formula for the Radon transform on hyperplanes

(20) 
$$Cu(x) = \Delta_x^k R^* Ru(x) \,.$$

Putting v = Ru in (19) and observing that  $R^* = R_0^*$ , we thus obtain a new inversion formula by means of the shifted dual transform

(21) 
$$Cu(x) = \partial_t^{n-1} R_t^* Ru(x)|_{t=0}.$$

Formula (21) might also be proved directly by the method of Section 6.2.

**b**. To extend formula (12) we first deal with the Laplace operator; general invariant operators will be considered in the next section.

Let G be a Lie group, K a compact subgroup and let L be the Laplace operator of the Riemannian manifold X = G/K (cf. Notations, **b**). The operator L can be expressed by means of any orthonormal basis  $X_1, \ldots, X_n$  of  $\mathfrak{p}$  as

$$Lf(gK) = \sum_{j=1}^{n} \partial_s^2 f(g \exp(sX_j)K) \big|_{s=0},$$

with  $f \in C^2(G/K)$ ,  $g \in G$ ; indeed both sides are G-invariant operators on X which coincide at g = e.

Now let Y = G/H where H is a Lie subgroup of G and, as before,

$$R^*v(gK) = \int_K v(gkH) \, dk \,, \quad R^*_t v(gK) = \int_K v(gktH) \, dk$$

for  $v \in C^2(Y)$  and  $g, t \in G$ . Then

(22) 
$$LR^*v(gK) = \int_K \left(\sum_j \partial_s^2 v\left(g\exp(sX_j)kH\right)\Big|_{s=0}\right) dk$$

But  $\sum X_j^2$  is a *K*-invariant element in the symmetric algebra of  $\mathfrak{p}$  and it follows that, for any  $\varphi \in C^2(\mathfrak{p}), k \in K$ ,

$$\sum_{j} \left. \partial_{s}^{2} \varphi\left( s X_{j} \right) \right|_{s=0} = \sum_{j} \left. \partial_{s}^{2} \varphi\left( s\left( k \cdot X_{j} \right) \right) \right|_{s=0}$$

242

Therefore k can be moved to the left of  $\exp sX_j$  in (22) and we obtain

(23) 
$$LR^*v(x) = \sum_j \left. \partial_s^2 R_{\exp sX_j}^* v(x) \right|_{s=0}$$

素社の中心

for  $v \in C^2(Y)$ ,  $x \in X$ . If  $\mathfrak{h} \cap \mathfrak{p}$  is a nontrivial subspace of  $\mathfrak{p}$  and the basis  $(X_j)$  contains a basis of this subspace, the sum in (23) only runs over an orthonormal basis of the orthogonal subspace  $(\mathfrak{h} \cap \mathfrak{p})^{\perp}$ , due to the right *H*-invariance of v.

We now give a more specific result for the geodesic Radon transform, in the notation of Section 4.1. If  $\mathfrak{s}$  is a *d*-dimensional Lie triple system contained in  $\mathfrak{p}$  and  $y_o = \operatorname{Exp} \mathfrak{s}$  the corresponding totally geodesic submanifold of X, we take as Y the set of all  $g \cdot y_o$  for  $g \in G$ . Then Y = G/H, where H is the subgroup of all  $h \in G$  globally preserving  $y_o$ .

PROPOSITION 16. Let X be one of the classical hyperbolic spaces  $H^n(\mathbf{F})$ ,  $\mathbf{F} = \mathbf{R}$ ,  $\mathbf{C}$  or  $\mathbf{H}$ . Assume  $\mathfrak{s}$  is a  $\mathbf{F}$ -vector subspace of  $\mathfrak{p}$  and let  $T \in \mathfrak{p}$  be any unit vector orthogonal to  $\mathfrak{s}$ . For  $v \in C^2(Y)$ , the shifted dual geodesic transform  $R^*_{\exp tT}v$  is then an even function of  $t \in \mathbf{R}$  and, for  $x \in X$ ,

$$LR^*v(x) = (n-d) \left. \partial_t^2 R^*_{\exp tT} v(x) \right|_{t=0}$$

where n and d denote the real dimension of X and  $\mathfrak{s}$  respectively.

In other words, the function  $(x, t) \mapsto R^*_{\exp tT} v(x)$  is a solution at time t = 0 of the wave operator  $L - (n - d)\partial_t^2$  on  $X \times \mathbf{R}$ .

Applying the proposition to  $H^3(\mathbf{R})$  with d = 2 we obtain formula (12). Indeed, if  $\varphi(t)$  is an even function of t, let  $\psi$  be defined by  $\psi(\tau) = \varphi(t)$  with  $\cosh t = 1/\tau$ ; then  $-\psi'(1) = \varphi''(0)$ .

EXAMPLE. By Theorem 8 the 2-geodesic transform on  $X = H^n(\mathbf{R})$  can be inverted by means of a second order differential operator:

$$-2\pi(n-2)u = (L+n-2)R^*Ru,$$

and Proposition 16 now yields the inversion formula

(24) 
$$-2\pi u = \left(\partial_t^2 + 1\right) R_{\exp tT}^* R u \Big|_{t=0} ,$$

where  $u \in \mathcal{D}(X)$  and  $T \in \mathfrak{p}$  is any unit vector orthogonal to  $\mathfrak{s}$ . Formula (24) also follows from Theorem 14 (ii) with k = 1, q' = 0.

*Proof of Proposition 16.* The point is to show that the group  $K \cap H$  acts transitively on the unit sphere of  $\mathfrak{s}^{\perp}$ , the orthogonal of  $\mathfrak{s}$  in  $\mathfrak{p}$ . For the

scalar product  $(T, V) = \operatorname{Re} \sum \overline{T}_i V_i$  on  $\mathfrak{p}$  we have  $(T, V\lambda) = (T\overline{\lambda}, V), \ \lambda \in \mathbf{F}$ , therefore  $\mathfrak{s}^{\perp}$  is a  $\mathbf{F}$ -subspace of  $\mathfrak{p}$ .

An element k of  $K \cap H$  is characterized by  $k \in K$  and  $k \cdot \text{Exp } \mathfrak{s} = \text{Exp } \mathfrak{s}$ , i.e.  $k \cdot \mathfrak{s} = \mathfrak{s}$  (adjoint action). Let n', d' be the respective dimensions of  $\mathfrak{p}$  and  $\mathfrak{s}$  as **F**-vector spaces. Taking a **F**-basis of  $\mathfrak{p}$  according to the decomposition  $\mathfrak{p} = \mathfrak{s} \oplus \mathfrak{s}^{\perp}$ , it follows that

$$K = U(1; \mathbf{F}) \times U(n'; \mathbf{F}), \quad K \cap H = U(1; \mathbf{F}) \times U(d'; \mathbf{F}) \times U(n' - d'; \mathbf{F}).$$

But  $U(n'-d'; \mathbf{F})$  acts transitively on the unit sphere of  $\mathbf{F}^{n'-d'}$ , which implies our claim.

If  $T, T' \in \mathfrak{s}^{\perp}$  are two unit vectors, there exists  $k_o \in K \cap H$  such that  $k_o \cdot T = T'$ . Thus

$$R^*_{\exp tT'}v(gK) = \int_K v\left(gkk_o \exp(tT)k_o^{-1}H\right) dk$$
$$= \int_K v\left(gk \exp(tT)H\right) dk = R^*_{\exp tT}v(gK) dk$$

In particular  $R^*_{\exp tT}v$  is an even function of t.

Going back to (23), we now take as  $(X_j)$  an orthonormal **R**-basis of  $\mathfrak{p}$  according to the decomposition  $\mathfrak{p} = \mathfrak{s} \oplus \mathfrak{s}^{\perp}$ . The n - d basis vectors in  $\mathfrak{s}^{\perp}$  give the same contribution to the right hand side, whereas the d vectors in  $\mathfrak{s}$  generate one parameters subgroups of H and give no contribution; indeed  $\exp tV \cdot \operatorname{Exp} \mathfrak{s} = \operatorname{Exp} \mathfrak{s}$  for  $V \in \mathfrak{s}$ , since  $\mathfrak{s}$  is a Lie triple system by Section 4.3 c. This completes the proof.  $\Box$ 

# 6.5 MULTITEMPORAL WAVES

We shall now deal with general invariant differential operators. As before G is a Lie group, H a closed subgroup, K a compact subgroup, and X = G/K, Y = G/H. Let g, h,  $\mathfrak{k}$  be the respective Lie algebras, and  $\mathfrak{t}$  a vector subspace of g such that

$$\mathfrak{g} = (\mathfrak{k} + \mathfrak{h}) \oplus \mathfrak{t}$$
.

Let  $K_1, \ldots, K_p$  be a basis of  $\mathfrak{k}$ , complemented by  $H_1, \ldots, H_q \in \mathfrak{h}$  so that the  $K_i$ 's and  $H_j$ 's are a basis of  $\mathfrak{k} + \mathfrak{h}$ , and let  $T_1, \ldots, T_r$  be a basis of  $\mathfrak{k}$ . We shall use the same notations for the corresponding left-invariant vector fields on G, e.g.

$$K_i f(g) = \left. \partial_s f\left(g \exp s K_i\right) \right|_{s=0} ,$$

with  $f \in C^{\infty}(G)$ ,  $g \in G$ ,  $s \in \mathbb{R}$ . We denote by  $\mathbf{D}(G)$  the algebra of all left invariant differential operators on G, by  $\mathbf{D}(G)^{K}$  the subalgebra of right