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The general inversion formula (14) for R thus follows from the special
case (13) of K-invariant functions at the origin, thanks to the shifted dual
transform.

If X is an isotropic space, the above trick (replace u by u9) simply
means replacing u(x) by its mean value over the sphere with center g • and

radius d(x0%x).

6.3 Examples

a. Horocycle transform. We first consider the horocycle Radon transform

on X G/K, a Riemannian symmetric space of the noncompact type.
Using the classical semisimple notations related to an Iwasawa decomposition
G KAN (see Notations, d), we take the point x0 K, resp. the horocycle
y0 N - x0, as the origin in X, resp. in Y G/MN. Then

Ru(g - y0) / u(gn • xQ) dn
JN

(integrating over M is unnecessary here) and the dual transform shifted by
a G A is

Kv(9 -xo)= / v(gka • y0) dk.
jk

For K-invariant u the decomposition g kan gives

Ru(g • y0) Ru(a • y()) / u(an • xQ) dn a~pAu(a) ;

JN

the Abel transform A is defined by this equality.
For K -invariant u G V(X) we have Au G V(A). Let a* be the dual space

of a. It is known from spherical harmonic analysis on X that the classical
Fourier transform

Au(X) / a~lXAu(a) da, À G a*
Ja

coincides with the spherical transform of u, with the inversion formula
([9] p. 454)

(15) u(x0) C f Au(X) \c{\)\~2 d\
J a*

where Cisa positive constant and c(A) is Harish-Chandra's function. Since
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C •1 c(A) I has polynomial growth on a* its Fourier transform is a tempered
distribution T on A exp a such that

u(x0) — (r, Au) (r(fl), apRu(a ya)).
Thus T inverts the Abel transform at the origin. By (14) we obtain the next
theorem.

THEOREM 13. Let X be a Riemannian symmetric space of the noncompact
type. Its horocycle Radon transform R can be inverted by

u(x) (T(ahapR*Ru(x)), xGl,
for u G V(X). The distribution T^a) (acting on the variable a G A) is, up to
a constant factor, the Fourier transform of |c(A)|~2.

Remarks.
(i) This extends a result by Berenstein and Tarabusi [2] for X Hn(R),

obtained by direct calculations.

(ii) Helgason's original inversion formula ([11], p. 116)

u(x) R*AARu(x)

follows easily from Theorem 13. Indeed Helgason's operator AA is defined
as follows ([11], p. 111). Given v G V(Y) and g kan G G, multiply
v(g • y0) v(ka • yQ) by ap, take the Fourier transform with respect to a G A,
multiply it by C • |c(A)|-2 (an even function of A), take the inverse Fourier
transform, and multiply by a~p ; the result is AAv(g - y0). In other words

AAv(g • y0) AAv(ka • y0) a~p (T * (apv)) (ka • y0) 5

where * is the convolution on A with respect to a. Let b denote a variable
in A ; since T is even we have

AAv(g • yQ) a~p(T(bh (ab)pv(kab • y0))

{%, bpv(kab - yo)) (T(bh bpv(gb • yJ)).
Replacing v by Ru, g by gk and integrating with respect to k G K we obtain

R*AARu(g • xQ) f (T(b), bpRu(gkb • y0))dk
Jk

(jib), bp J^Ru(gkb • yQ)dk^ {T(bh bpR*bRu(g • x0)).

By Theorem 13 this is u(g -x0), as claimed.

(iii) Note that T is supported at the origin if and only if |c(A)|~2 is a
polynomial, i.e. if the Lie algebra q has only one conjugacy class of Cartan
subalgebras (see Corollary 20 below).
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b. Totally geodesic transform on classical hyperbolic spaces. We

retain the notation of Section 4.3 c.

Theorem 14. Let X Hm(F), F R, C or H, be one of the classical

hyperbolic spaces, let s be any F-vector subspace of p Fm, and T any

unit vector orthogonal to s in p.

For the Radon transform defined by the totally geodesic submanifolds

y g- Exp s, of (real) dimension d, we have the following inversion formulas

by means of shifted dual transforms, for u G T>(X) and x G X.

(i) If d — 2k + 1 is odd, k>0,

2 kirk+lu(x)=(cr-1da)k+1 f (R* ,(t)tRu(x)) (a2-T2) 1/2di
Jo <7=1

where t(r) denotes the positive solution of the equation cosh£= 1/r.

(ii) If d 2k is even, k > 1, there exists a polynomial of degree k

Qk(X) v^:Xk + --- + (q, + l)(q' + 3)---(q/ + 2k-l),
(2k)\

withrational coefficients (depending on k and q' dim s2a such that

C-2tt )ku(x)Qk(d2)

Remarks. This extends a result proved by Helgason ([10], p. 144, or

[14], p. 97) for F R. In case (i), a look at the proof below shows that an

arbitrary positive integer i may be added to the exponents of a~ldcr and

a2 — t2 ; Helgason's result is obtained for I — k. From the proof of case (ii)
we obtain for k 1,2

Qfd2) d2 + q'+ I

Qi(92) -df + (lq' + — ^ + (q + 1 )(q' + 3).

Our d is of course even whenever F C or H. A comparison with Section
4.3 c shows that (except for F R) the present assumption on 5 is stronger
than in Theorem 8.

Proof of Theorem 14. In order to use spherical coordinates on totally
geodesic submanifolds of X, we need a lemma. As in Section 4.3 c, the
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matrices in p can be identified to vectors V (Vu..., Vm) e Fm, and the
scalar product of T, V G p is

m(T,V)Re (f • V),with ^ f, V,

Z=1

Let || || be the corresponding norm.

Lemma 15. Let X — Hm(F) be a classical hyperbolic space.
(i) Let T,V G p. In the geodesic triangle with vertices x0 (the origin

of X), Exp T and exp T • Exp V, the Riemannian lengths of the sides are
t ~ 11*11, r= || V|| and w given by

12 i sinh t sinh r N 2

cosh w cosh t cosh r H (T,V)

sinh t sinh r, _ ,N
2

+ (— -~\T.V-(T,V)\V t

(ii) Let s C p be a Lie triple system. If T G p is orthogonal to 5, the
totally geodesic submanifold exp T Exp 5 is at distance t ||r|| from the
origin.

Proof, (i) The Riemannian distance from to Exp T is ||r|| t.
Transforming and Exp V by the isometry exp T e G shows that the
second side of the triangle has length r. The third side is w=\\W\\, where
IT is the unique IT e p such that Exp W — exp T • Exp V, in other words

exp W (exp T exp V) k

for some k6K.Themap g i—> gO{g)~l, where 0 is the Cartan involution
of G, transforms this equality into

exp 2W exp T exp 2V exp T.

By elementary matrix computations T3 t2T, and the exponential is

„ r sinh t cosh t — 1
0

exp T I +T+ T2,
t 2 '

where I is the unit matrix. Now trT 0 and trT2 2 is real, so that
taking the traces we obtain

tr (exp 2IV; Re tr (exp 21V) Re tr (exp IT exp 2 V) ;

indeed Retr (gg')Relr(g'g) for g,g' G G, even when F H.
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Taking account of

Re tr 7V 2(7", V),tr7Y2 0,

RetiT2V2 t2r2 + \T• V|2,

the expression of cosh w follows after some elementary calculations.

(ii) Let y exp T • Exp 5. By (i) with V G 5 and (T, V) 0, the distance

1 w of the origin to the point Exp W exp T • Exp V of y is given by

1

2 2 (sinh t sinh r, — T/i\2
J cosh w (cosh t cosh r) + I — 1T - V | J

{ Therefore w > t, with equality if and only if V 0, and Exp T is the unique
j point of y closest to x0 (geodesic orthogonal projection of the origin on y).

j The lemma is proved.

I Going back to Theorem 14, let g G G and let y g • Exp 5 be an

arbitrary given totally geodesic submanifold, element of Y. The minimum
j distance between y and the origin is obtained at a point Exp T G y, with

Te p. In particular there exists V e s such that Exp T g • Exp V, i.e.

(exp T)k g exp V for some k e K. But Exp s is globally invariant under the
« action of exp V, so that y (exp T)k • Exp s exp T • Exp (k • 5). Changing

notation, we may write 5 for k • s and y exp T • Exp 5.
j Let V G s. On the geodesic expT • Exp sV, se R, contained in y, the
I minimum distance to is obtained for s 0. By Lemma 15 (i) with sV

instead of V, this implies (T, V) 0 so that T is orthogonal to s and Lemma
j 15 (ii) applies.

Besides, if we assume s is a F-vector subspace of p therefore a Lie triple
system (Section 4.3c), the vector T must be orthogonal to all VA, V e s,
À G F, whence T • V 0. By Lemma 15 the distance w w(t, r) between

j and an arbitrary point x exp T • Exp V of y is simply given by

j (16) coshw(t, r) ä coshtcoshr, r=||r||, r=||y||,
j the same expression as for real hyperbolic spaces.
j According to (13) and (14) we only need to invert R at the origin for
j a K-invariant function u. As shown in Section 4.1a, Lemma 1 applies and

] Ru(y) fy u(x) drriy. When u is radial the integral can be obtained in spherical
j coordinates on y with origin Exp T, as

1 r°°
j (17) Ru(y) / u(w(t, r))A0(r) dr
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where A0(r) ujd(sinhr)d ^coshr)*' is the area of spheres of radius r in
y. By (16) and (17) Ru may be viewed as a smooth even function Ru(t)
of ^ ç R.

The end of the proof is now similar to the case of Hn(R), as given in
[11], p. 53 or [14], p. 97. Let r (coshr)-1, and let t > 0 denote the
inverse function. Introducing the functions

<p(r) T~d-q'u(t(T)), V(-T-) T~l-q'Ru{t(r)),

which are C°° on ]0,1], (17) becomes

(18) ip(r) ud f<p(p)(r2- p2)(^2)
1

dp.
Jo

Proof of (i). The Abel type integral equation (18) can be inverted as
usual: it implies that, for any a >0, o>0,

^+a) lo ^T^(j2 ^ 1 rdr -

itd'2T(a)£ <p(p) (a2 - dp

and, choosing a > 0 such that N — {d/7) a is a strictly positive integer, it
follows easily that

2n lTTd/2r(a)ip(o) cr(o (/ ip(r)(o2 T2)" lrdr

If d— 2k+ 1 is odd, k>0,the smallest such a is 1/2 so that 1

and

2V+V(<r) a (o~1da)k+1 £ V(t)(o-2 - T2)~l/2TdT^j > 0;

the derivatives cannot be taken here under the integral. Besides d can only
be odd for F R according to the assumption on 5, and q' 0 in that case.
Going back to u and Ru we thus obtain for a 1

2V+'«W {<J-lda)k+l [Ru{t(T))(o2 -
JO <7=1

for any K-invariant u e V(X). The claim follows by Section 6.2.

Proof of (ii). If d 2k is even, k > 1, the integral equation (18) can be
directly solved as

(27t)V(t) r (T~1dT)kip,r > 0.
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In particular, at the origin,

(27 r)ku(x0) (r~ldT)k Ru^(dkT + +(-1)V + \){q' + 3) • • • - 1)) RuWt))
T= 1

To switch over to derivatives with respect to t we note that, if g(r) f(t)
1
2I with t (cosh t) 1

1 — j + • • • identification of Taylor expansions at

\r — 1, resp. t 0, leads to

lVg^O) ^/(M)(Q)
Jt! (2jfc)!

+ ^/"(0),

where dots are a sum of even derivatives of / multiplied by some rational
coefficients (like a^). Therefore

(-2tt )ku{x0) + ••• + (?' + 1 + 3) • • • - l)j äh(0|(=o

for any K-invariant u G T>(X), whence the claim by Section 6.2.

6.4 The amusing formula generalized

a. To motivate the forthcoming generalizations of the amusing formula
(12) and their applications to Radon inversion, we briefly recall the classical
example of points and hyperplanes in the Euclidean space R". Let (to,p)
be parameters for the hyperplane defined by the equation u where w
is a unit vector, p is a real number and • is the scalar product. Given t G R
and a point x G R", the parameters (co,p)a(w, t +w -x) define a hyperplane
at distance |f| from x, and

Rt v(x)~Ix) duo
Js*-'

is the corresponding shifted dual Radon transform, where v(cj.p) -p)
lis an arbitrary smooth even function on Sn~l x R. Changing u into -io in
I the integral shows that R* v(x) is an even function of

Since 1 it is easily checked that

ipt~A*) v(u), + to x) 0,

where Xx is the Euclidean Laplace operator acting on x. Thus R*v{x), as a
function of (x, t)inR" x R, is a solution of the wave equation, being an
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