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INVERTING RADON TRANSFORMS 235

The general inversion formula (14) for R thus follows from the special
case (13) of K-invariant functions at the origin, thanks to the shifted dual
transform.

If X is an isotropic space, the above trick (replace u by u,) simply
means replacing u(x) by its mean value over the sphere with center g-x, and
radius d(x,,x).

6.3 EXAMPLES

a. HOROCYCLE TRANSFORM. We first consider the horocycle Radon trans-
form on X = G/K, a Riemannian symmetric space of the noncompact type.
Using the classical semisimple notations related to an Iwasawa decomposition
- G = KAN (see Notations, d), we take the point x, = K, resp. the horocycle
Yo =N -x,, as the origin in X, resp. in ¥ = G/MN. Then

Ru(g - y,) = / u(gn - x,) dn
N

- (integrating over M is unnecessary here) and the dual transform shifted by
- a€A is
Ryu(g - x,) = / v(gka - y,) dk .

K

For K-invariant u the decomposition g = kan gives

Ru(g - y,) = Ru(a - y,) = / u(an - x,) dn = a=* Au(a) ;
N

- the Abel transform A is defined by this equality.

For K-invariant u € D(X) we have Au € D(A). Let a* be the dual space
~of a. It is known from spherical harmonic analysis on X that the classical
~ Fourier transform

;l\u()\) = /a_i’\Au(a) da, A€a*,
A

coincides with the spherical transform of u, with the inversion formula
([9] p.454)

15) u(x,) = C / Au(N) [V 2 dx,

where C is a positive constant and c¢()\) is Harish-Chandra’s function. Since
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C-|c(\)|™* has polynomial growth on a* its Fourier transform is a tempered
distribution 7' on A = expa such that
w(x,) = (T, Au) = (T, a’Ru(a - y,)) .

Thus T ‘inverts the Abel transform at the origin. By (14) we obtain the next
theorem.

THEOREM 13. Let X be a Riemannian symmetric space of the noncompact
type. Its horocycle Radon transform R can be inverted by

u(x) = (T, a’RiRu(x)), x € X,

Jor u € D(X). The distribution Ty, (acting on the variable a € A) is, up to
a constant factor, the Fourier transform of lc()\)l_z.

REMARKS.
(i) This extends a result by Berenstein and Tarabusi [2] for X = H'(R),
obtained by direct calculations.

(i1) Helgason’s original inversion formula ([11], p. 116)
u(x) = R* AARu(x)

follows easily from Theorem 13. Indeed Helgason’s operator AA is defined
as follows ([11], p.111). Given v € DY) and ¢ = kan € G, multiply
v(g -yo) = v(ka-y,) by a”, take the Fourier transform with respect to a € A,
multiply it by C - |c(/\)|_2 (an even function of )\), take the inverse Fourier
transform, and multiply by a=*; the result is AAv(g-y,). In other words

AAV(g - yo) = AAv(ka - y,) = a™P (T * (a”v)) (ka - y,) ,

where * is the convolution on A with respect to a. Let b denote a variable
in A; since T is even we have

AAv(g - y,) = a” P (Tpy, (ab)’v(kab - y,))
= (Twy, bPv(kab - y,)) = (T, b*v(gh - y,)) .
Replacing v by Ru, g by gk and integrating with respect to k € K we obtain

R*AARu(g - x,) = / (T(vy, b’ Ru(gkb - y,))dk
K

= <T(b), b? / Ru(gkb * yo) dk> == <T(b), prZRu(g : x0)> .
K

By Theorem 13 this is u(g - x,), as claimed.

(1ii)) Note that T is supported at the origin if and only if |c(/\)|*2 s a
polynomial, i.e. if the Lie algebra g has only one conjugacy class of Cartan
subalgebras (see Corollary 20 below).
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b. TOTALLY GEODESIC TRANSFORM ON CLASSICAL HYPERBOLIC SPACES. We
retain the notation of Section 4.3 c.

THEOREM 14. Let X = H™(F), F =R, C or H, be one of the classical
hyperbolic spaces, let 5 be any F-vector subspace of p = F", and T any
unit vector orthogonal to s in 9.

For the Radon transform defined by the totally geodesic submanifolds
y = ¢g-Exp s, of (real) dimension d, we have the following inversion formulas
by means of shifted dual transforms, for u € D(X) and x € X.

W) If d=2k+1 is odd, k>0,

2kt = (0710) " [ (R (02 =7 | _
0

o=1

where 1(T) denotes the positive solution of the equation cosht=1/T.
(i) If d = 2k is even, k > 1, there exists a polynomial of degree k

k1

25k , ; ;
Qk(A):m)\k‘*‘"“F(C] + 1@ +3) (¢ +2k—1),

with rational coefficients (depending on k and q' = dimsy, ), such that

(—2m)*u(x) = Ou(87) (Rixp rRUX)) _, -

REMARKS. This extends a result proved by Helgason ([10], p. 144, or
[14], p.97) for F = R. In case (i), a look at the proof below shows that an
arbitrary positive integer ¢ may be added to the exponents of o~ '8, and
o2 — 72 ; Helgason’s result is obtained for ¢ = k. From the proof of case (ii)

we obtain for k= 1,2
0107 =8 +4 +1
2 1 4 / 14 2 / /
Qz(@):g@f + | 2q +? Oy + (g + (g +3).

Our d is of course even whenever F = C or H. A comparison with Section

4.3 ¢ shows that (except for F = R) the present assumption on s is stronger
than in Theorem 8.

Proof of Theorem 14. In order to use spherical coordinates on totally
geodesic submanifolds of X, we need a lemma. As in Section 4.3¢, the
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matrices in p can be identified to vectors V = V1,..., V) € F™, and the
scalar product of T,V € p is

(T,V)y=Re (T V), with T- V=> TV;.
i=1
Let || || be the corresponding norm.

LEMMA 15. Let X = H™(F) be a classical hyperbolic space.

(i) Let T,V € p. In the geodesic triangle with vertices x, (the origin
of X), ExpT and expT -Exp V, the Riemannian lengths of the sides are
t=|T|, r=|V|| and w given by

) sinh ¢ sinh g
cosh”w = (| coshzcoshr + " (T,V)
r

( sinh 7 sinh r
+

4 r

2
!T-{V—(T,V)]) .

(1) Let s C p be a Lie triple system. If T € p is orthogonal to s, the
totally geodesic submanifold expT - Exp s is at distance t = \T|| from the
origin.

Proof. (i) The Riemannian distance from x, to ExpT is ||T| = t.
Transforming x, and Exp V by the isometry expT € G shows that the
second side of the triangle has length r. The third side is w = ||W/||, where
W is the unique W € p such that Exp W = exp T - Exp V, in other words

expW = (expTexpV)k

for some k € K. The map g — g0(g)~!, where 6 is the Cartan involution
of G, transforms this equality into

exp2W =expTexp2VexpT.

By elementary matrix computations 7° = T, and the exponential is

sinh ¢ coshz — 1 72

expT =1+ T+ 2 )

where [ is the unit matrix. Now tr7 = 0 and tr 72 = 242 is real, so that
taking the traces we obtain

tr (exp 2W) = Retr (exp 2W) = Retr (exp 27T exp2V);

indeed Retr(gg’) =Retr(g’g) for g,¢’ € G, even when F = H.
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Taking account of

Retr TV = 2(T, V), rT?V=tuTV>=0,
Retr 72V? = 272 +|T- V|,
the expression of coshw follows after some elementary calculations.

(ii) Let y =expT-Exp 5. By (i) with V € s and (T, V) = 0, the distance
w of the origin to the point Exp W =expT - Exp V of y is given by

: 2
sinh#sinhr, —
cosh? w = (cosh 7 cosh r)2 + ( H; . ‘T . V|> .

Therefore w > ¢, with equality if and only if V =0, and Exp T is the unique
point of y closest to x, (geodesic orthogonal projection of the origin on y).
The lemma is proved. [

Going back to Theorem 14, let ¢ € G and let y = g - Exps be an
arbitrary given totally geodesic submanifold, element of Y. The minimum
. distance between y and the origin x, is obtained at a point Exp T € y, with
- T € p. In particular there exists V € s such that Exp T = g - Exp V, ie.
(expT)k = gexp V for some k € K. But Exp s is globally invariant under the
action of expV, so that y = (expT)k-Exp s = expT - Exp (k - s). Changing
notation, we may write s for k-s and y=expT -Exp s.

Let V € 5. On the geodesic expT - Exp sV, s € R, contained in y, the
minimum distance to x, is obtained for s = 0. By Lemma 15 (i) with sV
instead of V, this implies (7, V) = 0 so that T is orthogonal to s and Lemma
15 (11) applies.

Besides, if we assume s is a F-vector subspace of p therefore a Lie triple
system (Section 4.3 ¢), the vector 7 must be orthogonal to all VA, V € s,
A€ F, whence T-V =0. By Lemma 15 the distance w = w(t,r) between
X, and an arbitrary point x =exp7 -Exp V of y is simply given by

(16) coshw(z,r) = coshtcoshr, ¢=|T|, r=|V|,

the same expression as for real hyperbolic spaces.
According to (13) and (14) we only need to invert R at the origin for
a K-invariant function u. As shown in Section 4.1a, Lemma 1 applies and

Ru(y) = fy u(x) dmy,. When u is radial the integral can be obtained in spherical
coordinates on y with origin Exp T, as

(17) Ru(y):/ u(w(t, r)A,(r)dr
0
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where A,(r) = wy(sinh r)?~Y(coshr)? is the area of spheres of radius r in
y. By (16) and (17) Ru may be viewed as a smooth even function Ru(t)
of t € R.

The end of the proof is now similar to the case of H"(R), as given in
[11], p.53 or [14], p.97. Let 7 = (cosh#)~!, and let ¢ = #() > 0 denote the
inverse function. Introducing the functions

o(r) =77 u@(r),  P(r) = 770 Rute(r)),
which are C* on 10, 1], (17) becomes

(1) v =wa [ o) (- ) dp.
0

Proof of (). The Abel type integral equation (18) can be inverted as
usual : it implies that, for any a > 0, ¢ > 0,

r (C—Z + a) /U Y(T)(o? — ) rdr =
27) ),

— 7_‘_d/21-‘(a)/ (P(P) (0_2 . p2) (d/Z)—I-a—l dp
0

and, choosing a > 0 such that N = (d/2) +a is a strictly positive integer, it
follows easily that

VL2 (a)p(0) = o (a—laU)N ( / ’ W(T)(0? — 72)"—17417) .
0

If d=2k+1 is odd, k > 0, the smallest such a is 1/2 so that N =k + 1
and

2k7rk+1go(a) =0 (0_180)k+1 </J (1) (o? — 72)—1/27037) , o>0;
0

the derivatives cannot be taken here under the integral. Besides d can only
be odd for F = R according to the assumption on s, and g’ = 0 in that case.
Going back to # and Ru we thus obtain for o = 1

)
o=1

2k ly(x,) = (J_lﬁa)kH /0 Ru(t(m))(0* — 751247
0

for any K-invariant u € D(X). The claim follows by Section 6.2.

Proof of (i1). 1If d = 2k is even, k > 1, the integral equation (18) can be
directly solved as

empm) =7 (r71'0.) %), T>0.
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In particular, at the origin,
@mfulx,) = (r19,) (T_l_q/Ru(t(T))>

= (O + -+ (DG + DG +3)- (g + 2k - 1) Ru(t(f))[

’? To switch over to derivatives with respect to ¢ we note that, if g(7) = f(¢)
2
w1th T = (coshp)™! =1 — 5 -+ -+ -, identification of Taylor expansions at
‘7=1, resp. t =0, leads to

<_l>" gP1)  F0)

| %Where dots are a sum of even derivatives of f multiplied by some rational
icoefﬁcients (like ay). Therefore

k

< 2m)u(x,) = (éﬁazk (@ DG +3) (g + 2k — 1)) Ru(®)|;=o ,

- for any K-invariant u € D(X), whence the claim by Section 6.2. []

6.4 THE AMUSING FORMULA GENERALIZED

a. To motivate the forthcoming generalizations of the amusing formula
(12) and their applications to Radon inversion, we briefly recall the classical
example of points and hyperplanes in the Euclidean space X = R”. Let (w, D)
be parameters for the hyperplane defined by the equation w -x = p, where w
is a unit vector, p is a real number and - is the scalar product. Given ¢ € R
and a point x € R", the parameters (w,p) = (w,?+w-x) define a hyperplane
at distance |z| from x, and

R;"v(x):/ v(w,t+ w - x)dw
Sn—~l

is the corresponding shifted dual Radon transform, where v(w,p) = v(—w, —p)
is an arbitrary smooth even function on $"~! x R. Changing w into —w in
the integral shows that R*v(x) is an even function of 7.

Since Y w? =1 it is easily checked that

(82— )’U(w t+w-x)=0

Where A, is the Euclidean Laplace operator acting on x. Thus Rfuv(x), as a
functlon of (x,7) in R” X R, is a solution of the wave equation, being an
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