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234 _ FE. ROUVIERE

Proof. Immediate, since

(RERu)(g - x,) /

u(gkth-xo)dkdh:/ug(th-xo)dh. L]
KxH

H

Before proceeding we mention the following extension of Proposition 3 to
shifted transforms. This result will not be used in the sequel.

PROPOSITION 12. Let G and H be unimodular, K compact, X = G/K |
and Y = G/H. For any u € C,(X) and t € G we have |

R;RMZM*S}

(convolution on X ). Here S; is the K -invariant distribution on X defined by
S =RfR0, and 6 is the Dirac distribution at the origin x, = K of X, ie. ‘

(S, u) = R*Ryu(x,) :/

u(kht™! - x,) dk dh .
KxH _

Proof.  The proof of Proposition 3 can be repeated here, with R*R, as the
dual of RR. The claim can also be checked directly, writing, for ¢ € D(X),

(R*Ru, ) — / u(gth - x)lg - x) dg dh,
GxH

and changing variables into »’ = h™!, ¢’ = gth; the result follows easily, G
and H being unimodular groups. Details are left to the reader. [ |

6.2 RADON INVERSION BY SHIFTS

The elementary Lemma 11 can be used in the following way. Assume the
transform R can be inverted at the origin for K -invariant functions on X, say

(13) u(xo) - <T(y)7Ru(y)> )

where T is some linear form on a space of functions on Y. Then, replacing
u by the K-invariant function u, in the lemma, we obtain

u(g - x,) = ug(xo) = <T7 Rug> .
The roles of g and ¢ can now be interchanged by Lemma 11, whence
(14) u(x) = (T, Rf Ru(x)) ,

for arbitrary u € D(X) and x € X. The notation T(s) means that T now acts
on the shift variable ¢, or 7-y, to be precise. Since R},Ru(x) = R*Ru(x) for
k€ K and h € H, this variable may actually be taken in K\G/H.
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The general inversion formula (14) for R thus follows from the special
case (13) of K-invariant functions at the origin, thanks to the shifted dual
transform.

If X is an isotropic space, the above trick (replace u by u,) simply
means replacing u(x) by its mean value over the sphere with center g-x, and
radius d(x,,x).

6.3 EXAMPLES

a. HOROCYCLE TRANSFORM. We first consider the horocycle Radon trans-
form on X = G/K, a Riemannian symmetric space of the noncompact type.
Using the classical semisimple notations related to an Iwasawa decomposition
- G = KAN (see Notations, d), we take the point x, = K, resp. the horocycle
Yo =N -x,, as the origin in X, resp. in ¥ = G/MN. Then

Ru(g - y,) = / u(gn - x,) dn
N

- (integrating over M is unnecessary here) and the dual transform shifted by
- a€A is
Ryu(g - x,) = / v(gka - y,) dk .

K

For K-invariant u the decomposition g = kan gives

Ru(g - y,) = Ru(a - y,) = / u(an - x,) dn = a=* Au(a) ;
N

- the Abel transform A is defined by this equality.

For K-invariant u € D(X) we have Au € D(A). Let a* be the dual space
~of a. It is known from spherical harmonic analysis on X that the classical
~ Fourier transform

;l\u()\) = /a_i’\Au(a) da, A€a*,
A

coincides with the spherical transform of u, with the inversion formula
([9] p.454)

15) u(x,) = C / Au(N) [V 2 dx,

where C is a positive constant and c¢()\) is Harish-Chandra’s function. Since
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