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232 ' F. ROUVIERE

product is then the reciprocal of a polynomial in A\? (as in the case d even),
and the corresponding inversion formula is

u=P(L) (R*Ru) * fy) ,

where P is a polynomial. We refer to [1] for details.

Unfortunately the method of spherical transforms sketched above seems
to provide explicit inversion formulas for the d -geodesic Radon transform on
X only when ¢’ = g or ¢ =1 on the one hand (to get rid of 3F,) and
d even or X = H"(R) on the other hand. The only reachable results so far
are thus the formulas already obtained in [1] for H"(R) and a new proof of
the above Theorem 8. The method might however yield some new results in
the wider class of Damek-Ricci spaces (or harmonic NA groups), where the
dimension g can be an arbitrary integer.

6. SHIFTED RADON TRANSFORMS, WAVES, AND THE AMUSING FORMULA

On page 146 of [10], S. Helgason notes the “amusing formula”

(12) LR*Ru(x) = —;R;"(T)Ru(x)
T =1

for the 2-geodesic Radon transform R on the hyperbolic space X = H3(R),
where L is the Laplace-Beltrami operator of X and x € X. In this formula, R}
is the generalized dual transform obtained by integrating over all 2-dimensional
totally geodesic submanifolds at distance t from a point x, and ¢ = #(7)
denotes the positive solution of the equation cosh? = 1 /7. In.[10], or [11],
p- 55, equation (12) is indirectly obtained by bringing together two different
inversion formulas for R. '

In this section we study general shifted transforms, a concept going back
to Radon himself [16] for the line transform in R?, and we use them to
derive inversion formulas. They also provide solutions of wave-type equations;
formula (12) can actually be seen as a wave equation at time ¢ = 0. We shall
give a direct proof of some generalized “amusing formulas”, thus solving wave
equations (called multitemporal when the time variable is multidimensional),
and we use them to relate two different types of Radon inversion formulas
(with or without shifts).
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6.1 SHIFTS

As before, let X = G/K and Y = G/H be two homogeneous spaces, with
K compact, and

Ru(g - yo) = / u(gh - x,) dh
H

be the corresponding Radon transform of u € Co(X).

Let t € G be a “shift”, fixed at first. Replacing the origin y, = H inY

by the shifted origin y, = - y,, with stabilizer subgroup H, = tHt™' C G,
- we obtain the new identification Y = G/H;, and a new incidence relation

between X and Y. A point x = g - x, € X is now incident to y € Y if and

only if there exists v € G such that

x=7v-%x and y=7-yr=7 Yo,

: 16

y = gkt Yo,
for some k € K. The corresponding shifted dual transform of v € C(Y) 1is

Rv(g - x,) = / v(gkt - y,)dk .
K

REMARK. We now have two double fibrations

Z = G/(K N H) Z, = G/(K N H,)
| N l N\
X=G/K Y=G/H, X=G/K Y=G/H,,

and we are dealing with the Radon tranform R given by the first and the
dual transform R} given by the second. The transform R; associated with the
second diagram 1s

Riu(g - yo) = / u(ght=" - x,) dh;
H

but, excepting the proof of Proposition 12, it will not be used in the sequel.

LEMMA 11. Let u € C.(X) and g,t € G. Then
(R;kRu)(g ‘X)) = (Rug)(t “Yo),

where ug, is the K-invariant function on X defined by

ug(x):/Ku(gk-x)dk.
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Proof. Immediate, since

(RERu)(g - x,) /

u(gkth-xo)dkdh:/ug(th-xo)dh. L]
KxH

H

Before proceeding we mention the following extension of Proposition 3 to
shifted transforms. This result will not be used in the sequel.

PROPOSITION 12. Let G and H be unimodular, K compact, X = G/K |
and Y = G/H. For any u € C,(X) and t € G we have |

R;RMZM*S}

(convolution on X ). Here S; is the K -invariant distribution on X defined by
S =RfR0, and 6 is the Dirac distribution at the origin x, = K of X, ie. ‘

(S, u) = R*Ryu(x,) :/

u(kht™! - x,) dk dh .
KxH _

Proof.  The proof of Proposition 3 can be repeated here, with R*R, as the
dual of RR. The claim can also be checked directly, writing, for ¢ € D(X),

(R*Ru, ) — / u(gth - x)lg - x) dg dh,
GxH

and changing variables into »’ = h™!, ¢’ = gth; the result follows easily, G
and H being unimodular groups. Details are left to the reader. [ |

6.2 RADON INVERSION BY SHIFTS

The elementary Lemma 11 can be used in the following way. Assume the
transform R can be inverted at the origin for K -invariant functions on X, say

(13) u(xo) - <T(y)7Ru(y)> )

where T is some linear form on a space of functions on Y. Then, replacing
u by the K-invariant function u, in the lemma, we obtain

u(g - x,) = ug(xo) = <T7 Rug> .
The roles of g and ¢ can now be interchanged by Lemma 11, whence
(14) u(x) = (T, Rf Ru(x)) ,

for arbitrary u € D(X) and x € X. The notation T(s) means that T now acts
on the shift variable ¢, or 7-y, to be precise. Since R},Ru(x) = R*Ru(x) for
k€ K and h € H, this variable may actually be taken in K\G/H.
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The general inversion formula (14) for R thus follows from the special
case (13) of K-invariant functions at the origin, thanks to the shifted dual
transform.

If X is an isotropic space, the above trick (replace u by u,) simply
means replacing u(x) by its mean value over the sphere with center g-x, and
radius d(x,,x).

6.3 EXAMPLES

a. HOROCYCLE TRANSFORM. We first consider the horocycle Radon trans-
form on X = G/K, a Riemannian symmetric space of the noncompact type.
Using the classical semisimple notations related to an Iwasawa decomposition
- G = KAN (see Notations, d), we take the point x, = K, resp. the horocycle
Yo =N -x,, as the origin in X, resp. in ¥ = G/MN. Then

Ru(g - y,) = / u(gn - x,) dn
N

- (integrating over M is unnecessary here) and the dual transform shifted by
- a€A is
Ryu(g - x,) = / v(gka - y,) dk .

K

For K-invariant u the decomposition g = kan gives

Ru(g - y,) = Ru(a - y,) = / u(an - x,) dn = a=* Au(a) ;
N

- the Abel transform A is defined by this equality.

For K-invariant u € D(X) we have Au € D(A). Let a* be the dual space
~of a. It is known from spherical harmonic analysis on X that the classical
~ Fourier transform

;l\u()\) = /a_i’\Au(a) da, A€a*,
A

coincides with the spherical transform of u, with the inversion formula
([9] p.454)

15) u(x,) = C / Au(N) [V 2 dx,

where C is a positive constant and c¢()\) is Harish-Chandra’s function. Since
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C-|c(\)|™* has polynomial growth on a* its Fourier transform is a tempered
distribution 7' on A = expa such that
w(x,) = (T, Au) = (T, a’Ru(a - y,)) .

Thus T ‘inverts the Abel transform at the origin. By (14) we obtain the next
theorem.

THEOREM 13. Let X be a Riemannian symmetric space of the noncompact
type. Its horocycle Radon transform R can be inverted by

u(x) = (T, a’RiRu(x)), x € X,

Jor u € D(X). The distribution Ty, (acting on the variable a € A) is, up to
a constant factor, the Fourier transform of lc()\)l_z.

REMARKS.
(i) This extends a result by Berenstein and Tarabusi [2] for X = H'(R),
obtained by direct calculations.

(i1) Helgason’s original inversion formula ([11], p. 116)
u(x) = R* AARu(x)

follows easily from Theorem 13. Indeed Helgason’s operator AA is defined
as follows ([11], p.111). Given v € DY) and ¢ = kan € G, multiply
v(g -yo) = v(ka-y,) by a”, take the Fourier transform with respect to a € A,
multiply it by C - |c(/\)|_2 (an even function of )\), take the inverse Fourier
transform, and multiply by a=*; the result is AAv(g-y,). In other words

AAV(g - yo) = AAv(ka - y,) = a™P (T * (a”v)) (ka - y,) ,

where * is the convolution on A with respect to a. Let b denote a variable
in A; since T is even we have

AAv(g - y,) = a” P (Tpy, (ab)’v(kab - y,))
= (Twy, bPv(kab - y,)) = (T, b*v(gh - y,)) .
Replacing v by Ru, g by gk and integrating with respect to k € K we obtain

R*AARu(g - x,) = / (T(vy, b’ Ru(gkb - y,))dk
K

= <T(b), b? / Ru(gkb * yo) dk> == <T(b), prZRu(g : x0)> .
K

By Theorem 13 this is u(g - x,), as claimed.

(1ii)) Note that T is supported at the origin if and only if |c(/\)|*2 s a
polynomial, i.e. if the Lie algebra g has only one conjugacy class of Cartan
subalgebras (see Corollary 20 below).
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b. TOTALLY GEODESIC TRANSFORM ON CLASSICAL HYPERBOLIC SPACES. We
retain the notation of Section 4.3 c.

THEOREM 14. Let X = H™(F), F =R, C or H, be one of the classical
hyperbolic spaces, let 5 be any F-vector subspace of p = F", and T any
unit vector orthogonal to s in 9.

For the Radon transform defined by the totally geodesic submanifolds
y = ¢g-Exp s, of (real) dimension d, we have the following inversion formulas
by means of shifted dual transforms, for u € D(X) and x € X.

W) If d=2k+1 is odd, k>0,

2kt = (0710) " [ (R (02 =7 | _
0

o=1

where 1(T) denotes the positive solution of the equation cosht=1/T.
(i) If d = 2k is even, k > 1, there exists a polynomial of degree k

k1

25k , ; ;
Qk(A):m)\k‘*‘"“F(C] + 1@ +3) (¢ +2k—1),

with rational coefficients (depending on k and q' = dimsy, ), such that

(—2m)*u(x) = Ou(87) (Rixp rRUX)) _, -

REMARKS. This extends a result proved by Helgason ([10], p. 144, or
[14], p.97) for F = R. In case (i), a look at the proof below shows that an
arbitrary positive integer ¢ may be added to the exponents of o~ '8, and
o2 — 72 ; Helgason’s result is obtained for ¢ = k. From the proof of case (ii)

we obtain for k= 1,2
0107 =8 +4 +1
2 1 4 / 14 2 / /
Qz(@):g@f + | 2q +? Oy + (g + (g +3).

Our d is of course even whenever F = C or H. A comparison with Section

4.3 ¢ shows that (except for F = R) the present assumption on s is stronger
than in Theorem 8.

Proof of Theorem 14. In order to use spherical coordinates on totally
geodesic submanifolds of X, we need a lemma. As in Section 4.3¢, the
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matrices in p can be identified to vectors V = V1,..., V) € F™, and the
scalar product of T,V € p is

(T,V)y=Re (T V), with T- V=> TV;.
i=1
Let || || be the corresponding norm.

LEMMA 15. Let X = H™(F) be a classical hyperbolic space.

(i) Let T,V € p. In the geodesic triangle with vertices x, (the origin
of X), ExpT and expT -Exp V, the Riemannian lengths of the sides are
t=|T|, r=|V|| and w given by

) sinh ¢ sinh g
cosh”w = (| coshzcoshr + " (T,V)
r

( sinh 7 sinh r
+

4 r

2
!T-{V—(T,V)]) .

(1) Let s C p be a Lie triple system. If T € p is orthogonal to s, the
totally geodesic submanifold expT - Exp s is at distance t = \T|| from the
origin.

Proof. (i) The Riemannian distance from x, to ExpT is ||T| = t.
Transforming x, and Exp V by the isometry expT € G shows that the
second side of the triangle has length r. The third side is w = ||W/||, where
W is the unique W € p such that Exp W = exp T - Exp V, in other words

expW = (expTexpV)k

for some k € K. The map g — g0(g)~!, where 6 is the Cartan involution
of G, transforms this equality into

exp2W =expTexp2VexpT.

By elementary matrix computations 7° = T, and the exponential is

sinh ¢ coshz — 1 72

expT =1+ T+ 2 )

where [ is the unit matrix. Now tr7 = 0 and tr 72 = 242 is real, so that
taking the traces we obtain

tr (exp 2W) = Retr (exp 2W) = Retr (exp 27T exp2V);

indeed Retr(gg’) =Retr(g’g) for g,¢’ € G, even when F = H.
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Taking account of

Retr TV = 2(T, V), rT?V=tuTV>=0,
Retr 72V? = 272 +|T- V|,
the expression of coshw follows after some elementary calculations.

(ii) Let y =expT-Exp 5. By (i) with V € s and (T, V) = 0, the distance
w of the origin to the point Exp W =expT - Exp V of y is given by

: 2
sinh#sinhr, —
cosh? w = (cosh 7 cosh r)2 + ( H; . ‘T . V|> .

Therefore w > ¢, with equality if and only if V =0, and Exp T is the unique
point of y closest to x, (geodesic orthogonal projection of the origin on y).
The lemma is proved. [

Going back to Theorem 14, let ¢ € G and let y = g - Exps be an
arbitrary given totally geodesic submanifold, element of Y. The minimum
. distance between y and the origin x, is obtained at a point Exp T € y, with
- T € p. In particular there exists V € s such that Exp T = g - Exp V, ie.
(expT)k = gexp V for some k € K. But Exp s is globally invariant under the
action of expV, so that y = (expT)k-Exp s = expT - Exp (k - s). Changing
notation, we may write s for k-s and y=expT -Exp s.

Let V € 5. On the geodesic expT - Exp sV, s € R, contained in y, the
minimum distance to x, is obtained for s = 0. By Lemma 15 (i) with sV
instead of V, this implies (7, V) = 0 so that T is orthogonal to s and Lemma
15 (11) applies.

Besides, if we assume s is a F-vector subspace of p therefore a Lie triple
system (Section 4.3 ¢), the vector 7 must be orthogonal to all VA, V € s,
A€ F, whence T-V =0. By Lemma 15 the distance w = w(t,r) between
X, and an arbitrary point x =exp7 -Exp V of y is simply given by

(16) coshw(z,r) = coshtcoshr, ¢=|T|, r=|V|,

the same expression as for real hyperbolic spaces.
According to (13) and (14) we only need to invert R at the origin for
a K-invariant function u. As shown in Section 4.1a, Lemma 1 applies and

Ru(y) = fy u(x) dmy,. When u is radial the integral can be obtained in spherical
coordinates on y with origin Exp T, as

(17) Ru(y):/ u(w(t, r)A,(r)dr
0
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where A,(r) = wy(sinh r)?~Y(coshr)? is the area of spheres of radius r in
y. By (16) and (17) Ru may be viewed as a smooth even function Ru(t)
of t € R.

The end of the proof is now similar to the case of H"(R), as given in
[11], p.53 or [14], p.97. Let 7 = (cosh#)~!, and let ¢ = #() > 0 denote the
inverse function. Introducing the functions

o(r) =77 u@(r),  P(r) = 770 Rute(r)),
which are C* on 10, 1], (17) becomes

(1) v =wa [ o) (- ) dp.
0

Proof of (). The Abel type integral equation (18) can be inverted as
usual : it implies that, for any a > 0, ¢ > 0,

r (C—Z + a) /U Y(T)(o? — ) rdr =
27) ),

— 7_‘_d/21-‘(a)/ (P(P) (0_2 . p2) (d/Z)—I-a—l dp
0

and, choosing a > 0 such that N = (d/2) +a is a strictly positive integer, it
follows easily that

VL2 (a)p(0) = o (a—laU)N ( / ’ W(T)(0? — 72)"—17417) .
0

If d=2k+1 is odd, k > 0, the smallest such a is 1/2 so that N =k + 1
and

2k7rk+1go(a) =0 (0_180)k+1 </J (1) (o? — 72)—1/27037) , o>0;
0

the derivatives cannot be taken here under the integral. Besides d can only
be odd for F = R according to the assumption on s, and g’ = 0 in that case.
Going back to # and Ru we thus obtain for o = 1

)
o=1

2k ly(x,) = (J_lﬁa)kH /0 Ru(t(m))(0* — 751247
0

for any K-invariant u € D(X). The claim follows by Section 6.2.

Proof of (i1). 1If d = 2k is even, k > 1, the integral equation (18) can be
directly solved as

empm) =7 (r71'0.) %), T>0.
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In particular, at the origin,
@mfulx,) = (r19,) (T_l_q/Ru(t(T))>

= (O + -+ (DG + DG +3)- (g + 2k - 1) Ru(t(f))[

’? To switch over to derivatives with respect to ¢ we note that, if g(7) = f(¢)
2
w1th T = (coshp)™! =1 — 5 -+ -+ -, identification of Taylor expansions at
‘7=1, resp. t =0, leads to

<_l>" gP1)  F0)

| %Where dots are a sum of even derivatives of f multiplied by some rational
icoefﬁcients (like ay). Therefore

k

< 2m)u(x,) = (éﬁazk (@ DG +3) (g + 2k — 1)) Ru(®)|;=o ,

- for any K-invariant u € D(X), whence the claim by Section 6.2. []

6.4 THE AMUSING FORMULA GENERALIZED

a. To motivate the forthcoming generalizations of the amusing formula
(12) and their applications to Radon inversion, we briefly recall the classical
example of points and hyperplanes in the Euclidean space X = R”. Let (w, D)
be parameters for the hyperplane defined by the equation w -x = p, where w
is a unit vector, p is a real number and - is the scalar product. Given ¢ € R
and a point x € R", the parameters (w,p) = (w,?+w-x) define a hyperplane
at distance |z| from x, and

R;"v(x):/ v(w,t+ w - x)dw
Sn—~l

is the corresponding shifted dual Radon transform, where v(w,p) = v(—w, —p)
is an arbitrary smooth even function on $"~! x R. Changing w into —w in
the integral shows that R*v(x) is an even function of 7.

Since Y w? =1 it is easily checked that

(82— )’U(w t+w-x)=0

Where A, is the Euclidean Laplace operator acting on x. Thus Rfuv(x), as a
functlon of (x,7) in R” X R, is a solution of the wave equation, being an
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integral of the elementary plane waves v(w,t+ w - +x). More generally, for any
positive integer k,

(19) (87 — A RYu(x) =

For odd n we have, by Theorem 8 with n = 2k + 1, d=2k and € =0,
the following inversion formula for the Radon transform on hyperplanes

(20) Cu(x) = A*R*Ru(x) .

Putting v = Ru in (19) and observing that R* = R, we thus obtain a new
inversion formula by means of the shifted dual transform

(21) Cu(x) = 0" R Ru(x)|,—o .

Formula (21) might also be proved directly by the method of Section 6.2.

b. To extend formula (12) we first deal with the Laplace operator; general
invariant operators will be considered in the next section.

Let G be a Lie group, K a compact subgroup and let L be the Laplace
operator of the Riemannian manifold X = G/K (cf. Notations, b). The operator
L can be expressed by means of any orthonormal basis X1,...,X, of p as

Lf(gK) =) 8 f(gexp(sX)K)| _,
j=1

with f € C*3(G/K), g € G; indeed both sides are G-invariant operators on X |
which coincide at g = e.

Now let ¥ = G/H where H is a Lie subgroup of G and, as before,

R*v(gK) = / v(gkH)dk, Rfv(gK) = / v(gktH) dk
K K
for v € C*(Y) and g, € G. Then

(22) LR*v(gK) = / (Z aszv(gexp(sz)kH)'S:O)dk.
Ko

But ZXJZ is a K-invariant element in the symmetric algebra of p and it
follows that, for any ¢ € C%(p), k € K,

Z gosX Z )

s=0

|
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Therefore k can be moved to the left of expsX; in (22) and we obtain

(23) LR'() = ) O RGpov()|
J

for v € C3(Y), x € X. If hNp is a nontrivial subspace of p and the
basis (X;) contains a basis of this subspace, the sum in (23) only runs over
an orthonormal basis of the orthogonal subspace (h ﬂp)L, due to the\right
H -invariance of v.

We now give a more specific result for the geodesic Radon transform, in
the notation of Section 4.1. If 5 is a d-dimensional Lie triple system contained
in p and y, = Exp s the corresponding totally geodesic submanifold of X,
we take as Y the set of all g-y, for g € G. Then ¥ = G/H, where H is
the subgroup of all 7 € G globally preserving v, .

PROPOSITION 16. Let X be one of the classical hyperbolic spaces H"(F),
F =R, C or H. Assume s is a F-vector subspace of p and let T € p be
any unit vector orthogonal to s. For v € C*(Y), the shifted dual geodesic
transform Rg, rv is then an even function of t € R and, for x € X,

LR*v(x) = (n — d) 8t2R:xp tTU(x)lt:o

where n and d denote the real dimension of X and s respectively.

In other words, the function (x, f) — Rép rv(x) is a solution at time ¢ = 0

- of the wave operator L — (n — d)0? on X x R.

Applying the propOsition to H*(R) with d =2 we obtain formula (12).

~ Indeed, if ¢(#) is an even function of 7, let ¢ be defined by ¥(1) = ()
- with coshr = 1/7; then —%'(1) = ©"(0).

EXAMPLE. By Theorem 8 the 2-geodesic transform on X = H"(R) can

- be inverted by means of a second order differential operator :

—2m(n —2)u = (L+n — 2)R*Ru,

- and Proposition 16 now yields the inversion formula

ery —2mu = (7 + 1) Rl rRul

expt =0 ?

where u € D(X) and T € p is any unit vector orthogonal to s. Formula (24)

also follows from Theorem 14 (ii) with k — 1, ¢ =0.

Proof of Proposition 16. The point is to show that the group KN H

- acts transitively on the unit sphere of 51, the orthogonal of s in p. For the
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scalar product (T,V) =Re) T;V; on p we have (T,VA) = (T, V), A €F,
therefore st is a F-subspace of p.

An element k of KNH is characterized by k€ K and k-Exp s =Exp s,
i.e. k-s =5 (adjoint action). Let n’, d’ be the respective dimensions of p and
5 as F-vector spaces. Taking a F-basis of p according to the decomposition
p=s5@s", it follows that

K=ULF)xUwn;F), KNH=UUF) x Ud;F) x Un' —d';F).

But U(n' —d’;F) acts transitively on the unit sphere of F* ~4"  which implies
our claim.

If T,T' € s+ are two unit vectors, there exists k, € K N H such that
ko, - T =T'. Thus

R;‘Xp 70(gK) = / v (gkko exp(tD)k, 1H) dk
K

= / v (gk exp(tT)H) dk = R r0(9K) .
K

*

In particular RZ, ;v is an even function of z.

Going back to (23), we now take as (X;) an orthonormal R-basis of p
according to the decomposition p = s @ s-. The n — d basis vectors in
gt give the same contribution to the right hand side, whereas the d vectors
in s generate one parameters subgroups of H and give no contribution;
indeed exptV -Exp s =Exp s for V € s, since s is a Lie triple system by
Section 4.3 ¢. This completes the proof. [

6.5 MULTITEMPORAL WAVES

We shall now deal with general invariant differential operators. As before G
is a Lie group, H a closed subgroup, K a compact subgroup, and X = G/K,
Y =G/H.Let g, b, & be the respective Lie algebras, and t a vector subspace
of g such that

g=>FE+hDt.
Let Kj,...,K, be a basis of £, complemented by H,. .. ,H; € b so that the
K;’s and H;’s are a basis of £+ b, and let Ty,...,T, be a basis of t. We
shall use the same notations for the corresponding left-invariant vector fields
on G, e.g.
Kif(g) = asf (g eXp SKi)is:() ’

with f € C*(G), g € G, s € R. We denote by D(G) the algebra of all
left invariant differential operators on G, by D(G)X the subalgebra of right
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K -invariant operatz)?s and by D(X) the algebra of G-invariant differential
~operators on X. For s = (sy,...,s,) €R", let

i(s) = expsiTy---exps,T,.

~ We recall that, for g,t € G,

R;‘v(gK):/’v(gktH)dk.
K

| THEOREM 17. Let G be a Lie group, H,K Lie subgroups, with K compact
~and X=G/K, Y =G/H.
‘ () For any P € D(X) there exists Q(0), a constant coefficients differential

operator on R”, with order(Q) < order(P), such that for any v € C*(Y ),
x€eX,

(25) PR*v(x) = Q(On)R;yv()| _, -

(i1) Assume furthermore that t is a Lie subalgebra of g with [t,h] C b,
and let T denote the connected Lie subgroup of G with Lie algebra t. Then
for any P € D(X) there exists a right-invariant differential operator Q on T,
with order(Q) < order(P), such that

(26) PR v(x) = QpnR; v(x)

for v € C®(Y); here Py acts on the variable x € X and Qg acts on t € T.

Thus R;v(x), as a function of (x,f) € X x T, solves the generalized
“multitemporal” wave equation (26) with time variable in a multidimensional
space. Similarly (25) can be viewed as a wave equation in the variables
(x,5) € X x R" at the time s = 0.

Proof. In order to work on G rather than on its homogeneous spaces,
we define w(g) = v(gH) and, for g,t € G,

@7) Fg,1) = (R7) (gK) = / w(ght) dk,
K

so that F(gk,k'th) = F(g,t) for any k, k' € K, h € H, and

Flg,0) = (R'0) (6K) = [ wighydk.
K

Let P € D(X) be given. Since K is compact the coset space X = G/K is
reductive and there exists D € D(G)X such that ([9], p.285)
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(28) ‘ (Pf) (9K) = D) (f(9K))

for f € C*(X), g € G.
To transfer derivatives from g to ¢ we observe that, by the invariance
of D under left translation by gk and right translation by k,

D(g)w(gkt) = D(x)w(gkxt)[

where g,x,t are variables in G. Integrating over K it follows that

(29) Dg)F(g,1) = DwyF(g,x1)],_, ,

By the Poincaré-Birkhoff-Witt theorem, the differential operators
Klﬁ‘ .. -Kf”Tlo” T HY . H

(Where all exponents are positive integers) are a basis of D(G). Setting apart
the terms with 8 = v = 0, we can thus write, for some E;,F; € D(G) and
some constant coefficients a,,

p q
B0 D=D'+} KEi+) FH, D'=) aa.olf" T
i=1 j=1 @

If we replace D)y by (30) in (29), the second term (KiE,-)(x)F(g,xt)|x:e
vanishes because K; € ¢ and F(g,kxt) = F(g,t). In the third term the left
invariant vector field H; €€ h acts by

(H)wF(g,xt) = OF(g,xexp (sH;) )| _, ,

and this vanishes too whenever ¢ normalizes H, because F(g,xth) = F(g, xt).
Since ¢ = e in case (i), or t € T with Hf = tH in case (ii), we finally
obtain for both cases (in multi-index notation)

BD Dk, 0 =DyF(g,x)| _,
— Z aq 05 F(g,(expsiTy - - -exps,T,)f)
- .

= (Z aﬁ?) F(g,1(s)0)

Let the operator Q be defined by
OF (1) =)~ aad2 f(t(s)0)

s=0

S=

Y

S—=

a right invariant differential operator on the group T in case (ii). The theorem
now follows from (27), (28) and (31) in both cases (i) and (ii). ]




INVERTING RADON TRANSFORMS 247

6.6 EXAMPLES

Keeping the notations of the previous section, we shall illustrate Theo-
rem 17.

a. TOTALLY GEODESIC TRANSFORM. As in Section 4.1a, let X = G/K
be a Riemannian symmetric space of the noncompact type and y, = Exp s
the origin in the dual space ¥ = G/H. By (3) we have £+ = £@s, therefore
Theorem 17 (i) applies with t = s, the orthogonal of s in p.

b. HOROCYCLE TRANSFORM. Again X = G/K is a Riemannian symmet-
ric space of the noncompact type (see Notations, d), but the dual space 1S now
the space of horocycles ¥ = G/MN. We recall Harish-Chandra’s 1somorphism
of algebras ([9], p.306)

I': DX) — DA,

where D(A)Y is the subalgebra of W -invariant differential operators in D(A).
The definition of T" will be recalled during the next proof.

PROPOSITION 18. Given v € C°(Y), the Junction of x = gK and a € A
given by

w(x,a) = a’Riv(x) = ap/ v(gkaN) dk
K

is a solution of the system of multitemporal wave equations
Puyw(x,a) = T(P)pw(x,a), P e DX),xeX,acA.
Proof.  Theorem 17 (ii) applies here with 7 —= A, the abelian subgroup

from the Iwasawa decomposition G = KAN ; indeed E+h=t+m+n==tpn,
and g = ®n)da, [a,h] C [a,m]+ [a,n] CnCHh. By (31) we thus have

(32) PR v(x) = Déa)RZU(x) ,
where D € D(G)X is related to P by (28) and D’ € D(A) was characterized by
(33) D — D' € ¢D(G) + D(G)n.

To compare D’ and T'(P) we recall that I'(P) =a=PD,oa”, where D, € D(A)
is characterized by

(34) D — D, € nD(G) + D(G)E .

| Moreover (Df)(a) = Dy(f(a)) for a € A, if f € C*®(G) is such that

I
»
i

f(ngk) = f(g) for any g G, k€K, ne N ([9], p. 302 sq.).

A ot Al e e
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Taking u € D(G) we have, by a classical integral formula,

(35) / Df(g) - u(g)dg = / Df(a) - u(nak) a=**dn da dk
G NXAXK

- / D, f(a) - u(nak)a™*dnda dk .
NXAXK

On the other hand, this integral can be written with the transpose operator
'D as

/G Df(g) - ulg) dg = /G £(g)'Du(g) dg
= / f(a)ya=* da / ("Du) (nak) dn dk .
A NxK

But ‘D € D(G)X therefore, for any ¢ € G,

/ (tDu) (ngk) dn dk = (f D) ( / u(ngk) dn dk) .
NxK @\ Sk

The latter integral, as a function of g, is left N-invariant and right K -invariant
so that

/ (tDu) (nak) dn dk = (’ D)a ( / u(nak) dn dk) :
NxK NxK

Since (‘D) =" (D’) obviously by (33) and (34), we obtain

/ Df(g) - u(g)dg = / D'(f(a)a~ ") da / u(nak) dn dk
G NxK

A

— / (azpD’ o a_zf’)f(a) - u(nak) a~*dnda dk
NXAXK

for any f € C*°(A) and any u € D(G). Comparing with (35) it follows that
Dy, =a**D' oa™%, D =a PT(P)oa”,

whence the result by (32). [

A slightly different proof can be obtained by decomposing the wave
a’R;v(gK) into elementary horocycle waves as follows. For ¢ € G we
denote by A(g) € A the A-component of g in the Iwasawa decompositions
G = NAK = ANK (we recall that A normalizes N), and by K(g) € K its
K -component in the decompositions G = KAN = KNA.
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PROPOSITION 19. (i) Given f € C*®°(A) and k € K, the function
w(gK,a) = a”*f(AKk™ " g)a)
is a solution of the system of multitemporal wave equations
Ppyw(x,a) =T(P)gwx,a), PeDX), x¢c X, acA.

(i) Given v € C®(Y), the function of x = gK and a € A given by

apR;“v(gK):/apv(gkaN)dk
K

is a solution of the same equations.

REMARKS. Part (i) is Proposition 8.5 in [12], p.118. Note that, k
being fixed, the “wave surfaces” A(k~'g) = constant are parallel horocycles
with the same normal kM € K/M (cf. [11], p.81). Indeed the equality
A(k—'g) =a, € A is equivalent to k™ 'g € a,NK, i.e. g-x, € ka, - y,.

If \ is a linear form on a and f(a) = a7, the result (i) implies that
A(k—1g)* P is, as a function of gK, an eigenfunction of all invariant operators
P € D(X) ; this is a fundamental result for harmonic analysis on X.

Part (ii) provides a simpler proof and a generalization of Proposition 8.6
in [12], p. 118, where v was the Radon transform Ru of some u € D(X).
We refer to [12] or [13] for a detailed study of those multitemporal wave
equations.

Proof of Proposition 19. (i) Both sides of the wave equation are invariant
under the action of K on X; we can therefore assume k = e. Now
w(gK,a) = a Pf(A(g)a) is left N-invariant and right K -invariant as a function
of g, and it will suffice to prove the result for g =a € A.

By the decomposition (34) of D we have, for any b € A,

D) (f(A(@)b))| ,—, = (Do) (f(ab)) = a’T(P) (a~"f(ab)) .

But I'(P) is an invariant differential operator on A, isomorphic to the additive
group of a vector space, and we obtain

D (b~"f(A(g)b)) |g:a = a’T(P) ((ab)~"f(ab))
= a’T(P)@) ((ab)~f(ab))
=T(P)) (b~"f(ab)) = T(P)w) (b Pf(A(g)D))]

Thus (i) is proved for g = a.

g=a '
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(i) Let g € G, k € K and k' = K(gk). Then gk = K'a'n’ with o’ € A
and n' € N. It follows that k~'g = a&'n’k~!, therefore o’ = Ak 1g)
and

gkaN = K'A (K'"'g) aN .

For fixed g the map k — K(gk) =k’ is a diffeomorphism of K onto itself
and, by the integral formula ([9], p. 197)

/ F(K')dk = / A g?P F(k) dK'
K K

we have

a’Ryv(gK) = a"/ v(gkaN) dk
K

= a” / v(k’A(K' " g)aN) dk
K
=a " / (AKX~ g)a)™ vk A~ g)aN) dk' .
K

By (1) applied to the functions f(a) = a*’v(k’aN), k' € K, this is a solution
of the wave equations. [

COROLLARY 20 (Helgason). If g has only one conjugacy class of Cartan
subalgebras, there exists a differential operator P € D(X) such that the
horocycle Radon transform of X = G/K is inverted by

u(x) = PR*Ru(x)

for u e DX), xe X.

We prove it here by means of shifted transforms and wave equations; see
[11], p. 116 for Helgason’s original proof.

Proof. The assumption on g implies that, in the notation of (15),
C - |c(N)|™ is a W-invariant polynomial on a*. Let P € D(X) be the
corresponding operator under the isomorphism I': D(X) — D(A)%, so that
I'(P)(i\) = C-|c(N)|~2. By Theorem 13 and Proposition 19 (i) (with v = Ru)
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we have
u(x) = (T, a”R*Ru(x)) = T(D)w (a’RiRu())|_,
= P (apRZRu(x)) fa:e = PpR*Ru(x). [
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