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Proof. By (5) one has S = (wa/wn) fap, With a = d — n and
b = dim sy, — dimpry = q —q (Section 4.1b). The theorem follows from
Proposition 6 and Section 3.2. U]

Theorem 8 encompasses Helgason’s Theorems 4.5 and 4.17 in [9], Chapter I
(with different normalizations from ours), as well as some generalizations (next
1 section). See also Grinberg [5] for the case of projective spaces, where the
. polynomial Py 18 related to representation theory.

4.3 EXAMPLES

| According to assumption (ii), three types of totally geodesic Radon
transforms can be inverted by Theorem 8. Putting aside the case of even-
~ dimensional planes in the Euclidean space X = R, we now describe some
examples of the latter two.

The space X = G/K is then one of the hyperbolic spaces, and the dual
space Y consists of all geodesic submanifolds g-Exp s, g € G, where s C p
is an even-dimensional Lie triple system. Let a = RH be any line in p, and
p=adps D pr be the corresponding root space decomposition.

a. A simple example is s = aDp2q, assuming poe 7 0. Classical bracket
relations (e.g. [8], p.335) imply that s is a Lie triple system and, reading
dim py,, from the classification of rank one spaces, dims is 2, 4 or 8 ; here
s =0 and sy = Poa-

b. Another example is § = p,, assuming this space is even-dimensional.
Bracket relations show s is a Lie triple system. To obtain compatible root
space decompositions of s and p we replace H by an H' € s, whence the
new root space decompositions with respect to a = RH'

p=a ®p, Dy, 5=0 D5y D5n,-
It follows again from the classification that pj, and s5, have the same
dimension in all cases, therefore coincide (Helgason [7], p. 171, or [9], p. 168).

This example is motivated by the Radon transform on antipodal manifolds of
compact symmetric spaces of rank one (loc. cit.).

c¢. TOTALLY GEODESIC TRANSFORM ON CLASSICAL HYPERBOLIC SPACES. Let
X = H™(F) with F =R, C, or H, be one of the classical hyperbolic spaces.
Then X = G/K with G = U(1,m;F), K = U(1;F) X U(m;F), and the Cartan
decomposition is g = €@ p where p, the space of all matrices




228 F. ROUVIERE
0 ‘71 Vm
Vi
V= X , V,eF,
: (0)
Vin

can be identified with F”.
Let V-W =" V,W;. For U,V,W € p = F™, easy computations lead to

(7 [U,[V,Wl=U\V-W—-W-V)—-V(W-U)+WV-U)

(F™ being considered as a F-vector space, with scalars acting on the right).
It follows that any F-subspace s of p is a Lie triple system. Similarly, the
natural inclusions R™ C C™ C H™ show that any R-subspace of p N R™, or
any C-subspace of p N C™, is a Lie triple system.

Let H # 0 be an element of p. The eigenspaces of (ad H)*> can be
obtained from (7), whence the decomposition

p=aDps P h2a ,a:RH,
po={VEp|H-V=0}, poo={HN|XEF, \+X=0},

with respective eigenvalues 0, H-H and 4 (H-H). A similar decomposition
holds for s, if H is chosen in s. The spaces a @ pr, = HF and p, are
F-subspaces of p, therefore Lie triple systems (as mentioned in a and b
above). More generally, Theorem 8 applies to the following four families of
totally geodesic submanifolds Exp s; all superscripts in the table are real
dimensions, with k,[,m strictly positive integers.

X dimp, | dimpy, | s | dims, | dimsy, | Yo =Exp s
H"R) | m—1 0 (1) | 2k—1 0 H?*(R)
H™C) | 2m—2 1 ) | 2k—2 1 H*(C)
H"(H) | 4m — 4 3 3) | 2k—2 1 H*(C)
H*"(H) | 4m — 4 3 4) | 41—4 3 H*(H)

Case (1): s is any R-subspace of p = R™, with dimgs = 2k < m.
Case (2): s is any C-subspace of p = C™, with dimcs =k < m.

Case (3): s is any C-subspace of C™ C p = H”, with dimcs = k < m.
Case (4): 5 is any H-subspace of p = H”, with dimgs =1 < m.
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d. HOROCYCLE TRANSFORM ON REAL HYPERBOLIC SPACES. Proposition 6
also applies to this case, because of the similarity between the functions S
obtained in Propositions 4 and 5.

Following the same steps as for geodesic submanifolds, one can find a
polynomial of the Laplacian with fundamental solution § (case ¢ = 0 in
Proposition 5). Indeed S(r) is now, up to a constant factor, f_l,z_n(r/Z) n
the notation of Section 4.2 with € = 1. Let

Ayg = 0 + (pcothr + 2g coth 2r) O,

. be the radial part of the Laplacian and ¢(r) = f(r/2). Then

4 (Ap09) () = (A0, f) (r/2) ;

note that the roles of p and g have been interchanged. The next theorem

now follows from Propositions 5 and 6, with n = 2k + 1, ¢ = 1 and
b=1—-p=2—n.

THEOREM 9 (Helgason). The horocycle Radon transform on the odd-
dimensional hyperbolic space X = H¥L(R), k> 1, is inverted by

Cu = Qx(L)R*Ru

where u € ‘D(X), L is the Laplace-Beltrami operator of X,

™k 2k — 1)! i _ ,
C= (—‘2‘) Uc——DT’ Or(x) = H(x +j2k —7)) .

j=1

In [11], p.210, the normalization of the Riemannian metric on X differs
from ours.

The result extends to the horocycle transform on a Riemannian symmetric

~space X = G/K of the noncompact type, provided that the Lie algebra g has
~ only one conjugacy class of Cartan subalgebras (see Corollary 20 below). The
- spaces H**'(R) in Theorem 9 are the rank one spaces among those.
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