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224 : . F. ROUVIERE

The compact cases (projective spaces) might be dealt with similarly. One
should then normalize H by «(H) = i and replace € by i. Integrals with
respect to r should run from O to the diameter £ of X, i.e. the first number
£ > 0 such that A(¢) =0.

4.2 AN INVERSION FORMULA

The G-invariant differential operators on an isotropic space X are the
polynomials of its Laplace-Beltrami operator L ([9], p.288). In order to invert
the d-geodesic Radon transform on X, Section 3.2 suggests looking for a
polynomial P such that the above distribution S is a fundamental solution
of P(L).

Motivated by (4) and (5), we introduce the family of radial functions Jap
on X defined by

sinher\“ % sinher\“™? sinh2er\
" = h — ,
Ja (1) ( - ) (cosher) ( ) ( )

€ 2e

where a and b are real constants and r is the distance from the origin x, ;
in particular f, ,(r) = r* for € = 0. Thus

A(?‘) = wnfn—l,q > S(I‘) = (wd/wn) fd—mq’—q

with g, ¢, n and d as defined above.

PROPOSITION 6. Assume € = 0 (Euclidean case), or ¢ =1 and b = 0,
or else e =1 and b =1—q (hyperbolic cases). Then, for any integer k > 1,
the function fy_,p defines a K-invariant distribution Fox_,, on X such that

PelD)Fop—np = w, 21k — D12 —n)(d —n)--- 2k — n) ¥,

where § is the Dirac distribution at the origin x, and Py is the polynomial

k

Py =[] (x+2(n—2—b)2+b+q—1) .
j=1

REMARK. The case b = 0, n = 2k 4 2 was given by Schimming and
Schlichtkrull [17], Theorem 6.1, as an example in their beautiful study of
- Hadamard’s method and Helmholtz operators on harmonic manifolds.
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Proof. By [9], p.313 the radial part of L is

a2 A'(r)
A=+

—= 8% + ((n — D)e cother + ge tanher) O,

9, =A(r) 100, 0A(r) o0,

= 0> + (pe cother + 2ge coth 2er) 9, .

The proof of the proposition breaks up into a few easy facts. First we
have, for any a,b € R, the following equality of functions of r > 0

(6) (A—ea+ba+n+b+qg—1)fap
—ala+n—2fy2p—bb+qg— Dfaps,

which is immediate from Af = A~!(Af’)’ and the identities

2 2
fap = tfacipr1 € Bfar10-1, fap =Jaop—2+E far2p2-

LEMMA 7. For a+n > 2, € =0 or 1, the locally integrable function
fa,p defines a K-invariant distribution F,, on X such that

(L—e*@a+b)a+n+b+qg—1))Fup
{ ala+n—2F, 2 —?bb+q—DF,p_» ifa+n>2
~ \ wead —eb(b+q— D)F,p_s if a+n=2

(equality of distributions on X ).

EXAMPLE. Taking b = 0, resp. b = 1 — g, the lemma provides the
following fundamental solutions (which coincide for g = 1)

sinher

2—n
(L+e*(n—2)(g+ 1)) ( ) = wy(2 — n)s

sinh er

2—n
(L +2e2(n + q— 3)) ( ) (cosher)! ™9 = w,(2 —n)d .

In the flat case € = 0 they both reduce to Lr*™" = w,(2 — n)d, a classical
result for R".

Proof of Lemma 7. Due to the K-invariance of f,, and L we need only
consider K-invariant test functions u € D(X). The integral

/X Fos ~ i — / Fus(PU(DAG) dr = w, / Frtnet pra(Pu(r) dr
0 0
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absolutely convergent if a+n > 0, defines a distribution F,; on X. In view
of the symmetry and K -invariance of the Laplace operator we have

<LFa,b7 u> - <Fa,b7Lu>

= / N Jap(NAu(r)A(r) dr = / ) fap(Au') dr
0 0

= (Afzp1t) (0) — (Afapu’) (0) + /0 (Af, ) udr.

If a+n> 2 the function Af,, vanishes to order a+n—1 at the origin,
and Afa’,b to order a +n — 2. Since u(r) is smooth (this notation stands for
uw(Exp rH) with ||H|| = 1), it follows that

(LFgp,u) = /OO Afap(Nu(r)A(r) dr,
0

whence the result by (6).
The case a +n = 2 is similar, in view of (Afa’,b)(O) = wpa. U

Proposition 6 now follows easily : letting
L,=L—¢c*(a+ba+n+b+qg—1)
we have, by Lemma 7,
aa+n—2)F,_ 2 ifa+n>2
wn,d O ifa+n=2
whenever £2b(b+ g — 1) = 0. Since
Pi(L) = Ly—nLy—p - - Log—n

LaFa,b - {

the proposition follows by induction on k. [

THEOREM 8. The d-geodesic Radon transform on a n-dimensional non-
compact Riemannian isotropic space X can be inverted by means of a poly-
nomial of its Laplace-Beltrami operator L, under the following assumptions :

(i) d is even: d =2k with k> 1;
(i) X =R", or dims,, = dimpy,, or else dimsy, = 1.
Then
Cu = P,(L)R*Ru
for any u € D(X), where Py is the polynomial from Proposition 6 (with
e =1, g =dimpy, and b+ q = dimsy, if X is hyperbolic, or € =0 if
X =R") and

C=wy(— 12Nk —D(n—2)(n—4)--- (n— 2k) .
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Proof. By (5) one has S = (wa/wn) fap, With a = d — n and
b = dim sy, — dimpry = q —q (Section 4.1b). The theorem follows from
Proposition 6 and Section 3.2. U]

Theorem 8 encompasses Helgason’s Theorems 4.5 and 4.17 in [9], Chapter I
(with different normalizations from ours), as well as some generalizations (next
1 section). See also Grinberg [5] for the case of projective spaces, where the
. polynomial Py 18 related to representation theory.

4.3 EXAMPLES

| According to assumption (ii), three types of totally geodesic Radon
transforms can be inverted by Theorem 8. Putting aside the case of even-
~ dimensional planes in the Euclidean space X = R, we now describe some
examples of the latter two.

The space X = G/K is then one of the hyperbolic spaces, and the dual
space Y consists of all geodesic submanifolds g-Exp s, g € G, where s C p
is an even-dimensional Lie triple system. Let a = RH be any line in p, and
p=adps D pr be the corresponding root space decomposition.

a. A simple example is s = aDp2q, assuming poe 7 0. Classical bracket
relations (e.g. [8], p.335) imply that s is a Lie triple system and, reading
dim py,, from the classification of rank one spaces, dims is 2, 4 or 8 ; here
s =0 and sy = Poa-

b. Another example is § = p,, assuming this space is even-dimensional.
Bracket relations show s is a Lie triple system. To obtain compatible root
space decompositions of s and p we replace H by an H' € s, whence the
new root space decompositions with respect to a = RH'

p=a ®p, Dy, 5=0 D5y D5n,-
It follows again from the classification that pj, and s5, have the same
dimension in all cases, therefore coincide (Helgason [7], p. 171, or [9], p. 168).

This example is motivated by the Radon transform on antipodal manifolds of
compact symmetric spaces of rank one (loc. cit.).

c¢. TOTALLY GEODESIC TRANSFORM ON CLASSICAL HYPERBOLIC SPACES. Let
X = H™(F) with F =R, C, or H, be one of the classical hyperbolic spaces.
Then X = G/K with G = U(1,m;F), K = U(1;F) X U(m;F), and the Cartan
decomposition is g = €@ p where p, the space of all matrices
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