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u=(RRu)«T.

Though the question can be tackled by harmonic analysis on X (cf. Section 5),
a G-invariant linear differential operator D can sometimes be found directly,
such that DS = §. Then (2) follows from the equality u = u*x DS = D(u *S).
Indeed, for any test function ¢,

(D(u*S), p) = (ux S, D)
= (u(g - x%,), (S, (D) o 7(9))) by (1)
= <u(g : x0)7 <SatD(§0 o T(g))>> 3

since the transpose operator ‘D is G-invariant too, as follows from the
existence of a G-invariant measure on X. Finally,

(D(u* S), ) = (u(g - x,), (DS, p 0 7(9)))
= (u* DS, p),

as claimed; assuming G unimodular (as in [9], p.291) is thus unnecessary here.

The method applies whenever we can find a G-invariant differential
operator D on X with given fundamental solution S. We shall now investigate
this question on the basis of Propositions 4 and 5.

4. RADON TRANSFORMS ON ISOTROPIC SPACES

Throughout this section X will be an isotropic connected noncompact
Riemannian manifold, that is a 'Euclidean space or a Riemannian globally
symmetric space of rank one:

X =R" or H"(R), H*"(C), H*"(H), H'*(0),

where all superscripts denote the real dimension of these real, complex,
quaternionic or Cayley hyperbolic spaces (cf. Wolf [18], §8.12). We first
try to invert the d-geodesic Radon transform on X, defined by integrating
over a family of d-dimensional totally geodesic submanifolds of X. At the
end of this section we shall see that the same tools provide an inversion
formula for the horocycle Radon transform on HZ*t!(R).

4.1 TOTALLY GEODESIC SUBMANIFOLDS

Our first goal is to describe these submanifolds and the corresponding
functions S in Proposition 4.
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a. Let X = G/K be a Riemannian symmetric space of the noncompact
type (of arbitrary rank), where G is a connected semisimple Lie group and
K a maximal compact subgroup (see Notations, ¢ and d).

At the Lie algebra level, a totally geodesic submanifold of X is defined
by a Lie triple system, i.e. a vector subspace 5 of p such that [s,[s,s]] C s.
Then Exp s is totally geodesic in X and contains the origin x,. Besides
¢ =[s5,5] Ct and g’ = ¥ @5 are Lie subalgebras of g. Let G’ be the
(closed) Lie subgroup with Lie algebra g’, and K’ (with Lie algebra ¥') be
the isotropy subgroup of x, in G’. Then

Exps =G /K' =G -x,,

a closed symmetric subspace of X ([8], p.224-226, or [15], p-234 sq.).
Now let Y be the set of all d-dimensional totally geodesic submanifolds
y=9-y, of X, with g € G and y, = Exps = G’ - x,. Lemma 1 applies:
if H is the subgroup of all 2 € G such that 4.y, = Yo, then y, = H - x,,
Y = G/H and the incidence relation is x € y.
It will be useful to note that the Lie algebra h of H satisfies

3) hb=0GNnHeGNP), HNEDI[s,s], hNp=s.

Indeed the definition of H shows its invariance under the Cartan involution
of G, whence the direct sum decomposition of . Besides § contains
g’ =[5,51®s by Lemma 1 and, for V € hNp, the point expV-x, =Exp V
belongs to H -x, =Exp s, thus V € s by the injectivity of Exp on p.

By Lemma 1 the Radon transform of u € C.(X) is given by

Ru(y) = / u(x) dm, (x) = / (g - %) o, (),
y Exp s

where dm,, is the Riemannian measure induced by X on its submanifold
Yo =Exp s. :

b. RANK ONE CASE. We now restrict to the rank one case (hyperbolic
spaces). Let H € s be a fixed non zero vector. The line a = RH is a maximal
abelian subspace of p and s, and Exp s is again a symmetric space of rank
one. The classical decomposition

p=aDpa D h2a

into eigenspaces of (ad H)*, with respective eigenvalues 0, (o((H))?, (20(H))?
(where o and 2a are the positive roots of the pair (g,a)), implies a similar
decomposition of the invariant subspace s :
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s=adsy D2,

with s, =s5Np, and s34, =5 NPy, . We set
p=dmp,, g=dimpy,, rn=dmX=p+qg+1,
p =dims,, ¢ =dims,,, d=dims=p +4 +1,

with ¢ = ¢’ = 0 when 2« is not a root (case of real hyperbolic spaces).

Let us normalize the vector H by the condition «(H) = 1. Multiplying if
necessary the Riemannian metric of X by a constant factor, we may assume
that the corresponding Euclidean norm on p satisfies ||H| = 1. Since Exp
is a diffeomorphism of p onto X, the integral of a function u € C,(X) can
be computed as

/u(x)dx: /u(Exp 2)J(Z)dz
X p

where J(Z) = det,(sinh ad Z/ad Z) is the Jacobian of Exp, a K-invariant
function on p. If u is K-invariant on X, we simply write u(r) for
uw(Exp Z) = w(Bxp rH) with r = ||Z|| whence, computing with spherical

coordinates on p,
/ u(x)dx = / u(r)A(rydr,
b'¢ 0

where A(r) = w,r* ! det,(sinhad rH/ad rH) is the area of the sphere with
center x, and radius r in X, and w, = 27"/2/T'(n/2) is the area of the unit
sphere in R". Taking account of the eigenvalues of (ad H)?> we obtain, with
a parameter £ explained in the next remark,

inher\? [ sinh2er\? i n-l
@) A =w, (smg»sr) <sm sr) — (smhsr) (cosher)?

2 €

A similar expression gives A,(r) for the submanifold y, (with d,p',q
instead of n,p,q). The distribution S in Proposition 4 is thus defined by the
radial function

sinh er

d—n
5) S(r) = Ao(N/A() = (wa/w,) ( ) (cosher)? —4 .

&

REMARK. Here ¢ = 1 for spaces of the noncompact type, but (4)
and (5) remain valid in the FEuclidean case too, setting ¢ = 0 and

~ (sinher)/e = r: when X = R”" the geodesic submanifolds are the affine
. d-planes, 1 <d<n-—1, and

S(r) = (wd/wn) rér,
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The compact cases (projective spaces) might be dealt with similarly. One
should then normalize H by «(H) = i and replace € by i. Integrals with
respect to r should run from O to the diameter £ of X, i.e. the first number
£ > 0 such that A(¢) =0.

4.2 AN INVERSION FORMULA

The G-invariant differential operators on an isotropic space X are the
polynomials of its Laplace-Beltrami operator L ([9], p.288). In order to invert
the d-geodesic Radon transform on X, Section 3.2 suggests looking for a
polynomial P such that the above distribution S is a fundamental solution
of P(L).

Motivated by (4) and (5), we introduce the family of radial functions Jap
on X defined by

sinher\“ % sinher\“™? sinh2er\
" = h — ,
Ja (1) ( - ) (cosher) ( ) ( )

€ 2e

where a and b are real constants and r is the distance from the origin x, ;
in particular f, ,(r) = r* for € = 0. Thus

A(?‘) = wnfn—l,q > S(I‘) = (wd/wn) fd—mq’—q

with g, ¢, n and d as defined above.

PROPOSITION 6. Assume € = 0 (Euclidean case), or ¢ =1 and b = 0,
or else e =1 and b =1—q (hyperbolic cases). Then, for any integer k > 1,
the function fy_,p defines a K-invariant distribution Fox_,, on X such that

PelD)Fop—np = w, 21k — D12 —n)(d —n)--- 2k — n) ¥,

where § is the Dirac distribution at the origin x, and Py is the polynomial

k

Py =[] (x+2(n—2—b)2+b+q—1) .
j=1

REMARK. The case b = 0, n = 2k 4 2 was given by Schimming and
Schlichtkrull [17], Theorem 6.1, as an example in their beautiful study of
- Hadamard’s method and Helmholtz operators on harmonic manifolds.
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Proof. By [9], p.313 the radial part of L is

a2 A'(r)
A=+

—= 8% + ((n — D)e cother + ge tanher) O,

9, =A(r) 100, 0A(r) o0,

= 0> + (pe cother + 2ge coth 2er) 9, .

The proof of the proposition breaks up into a few easy facts. First we
have, for any a,b € R, the following equality of functions of r > 0

(6) (A—ea+ba+n+b+qg—1)fap
—ala+n—2fy2p—bb+qg— Dfaps,

which is immediate from Af = A~!(Af’)’ and the identities

2 2
fap = tfacipr1 € Bfar10-1, fap =Jaop—2+E far2p2-

LEMMA 7. For a+n > 2, € =0 or 1, the locally integrable function
fa,p defines a K-invariant distribution F,, on X such that

(L—e*@a+b)a+n+b+qg—1))Fup
{ ala+n—2F, 2 —?bb+q—DF,p_» ifa+n>2
~ \ wead —eb(b+q— D)F,p_s if a+n=2

(equality of distributions on X ).

EXAMPLE. Taking b = 0, resp. b = 1 — g, the lemma provides the
following fundamental solutions (which coincide for g = 1)

sinher

2—n
(L+e*(n—2)(g+ 1)) ( ) = wy(2 — n)s

sinh er

2—n
(L +2e2(n + q— 3)) ( ) (cosher)! ™9 = w,(2 —n)d .

In the flat case € = 0 they both reduce to Lr*™" = w,(2 — n)d, a classical
result for R".

Proof of Lemma 7. Due to the K-invariance of f,, and L we need only
consider K-invariant test functions u € D(X). The integral

/X Fos ~ i — / Fus(PU(DAG) dr = w, / Frtnet pra(Pu(r) dr
0 0
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absolutely convergent if a+n > 0, defines a distribution F,; on X. In view
of the symmetry and K -invariance of the Laplace operator we have

<LFa,b7 u> - <Fa,b7Lu>

= / N Jap(NAu(r)A(r) dr = / ) fap(Au') dr
0 0

= (Afzp1t) (0) — (Afapu’) (0) + /0 (Af, ) udr.

If a+n> 2 the function Af,, vanishes to order a+n—1 at the origin,
and Afa’,b to order a +n — 2. Since u(r) is smooth (this notation stands for
uw(Exp rH) with ||H|| = 1), it follows that

(LFgp,u) = /OO Afap(Nu(r)A(r) dr,
0

whence the result by (6).
The case a +n = 2 is similar, in view of (Afa’,b)(O) = wpa. U

Proposition 6 now follows easily : letting
L,=L—¢c*(a+ba+n+b+qg—1)
we have, by Lemma 7,
aa+n—2)F,_ 2 ifa+n>2
wn,d O ifa+n=2
whenever £2b(b+ g — 1) = 0. Since
Pi(L) = Ly—nLy—p - - Log—n

LaFa,b - {

the proposition follows by induction on k. [

THEOREM 8. The d-geodesic Radon transform on a n-dimensional non-
compact Riemannian isotropic space X can be inverted by means of a poly-
nomial of its Laplace-Beltrami operator L, under the following assumptions :

(i) d is even: d =2k with k> 1;
(i) X =R", or dims,, = dimpy,, or else dimsy, = 1.
Then
Cu = P,(L)R*Ru
for any u € D(X), where Py is the polynomial from Proposition 6 (with
e =1, g =dimpy, and b+ q = dimsy, if X is hyperbolic, or € =0 if
X =R") and

C=wy(— 12Nk —D(n—2)(n—4)--- (n— 2k) .
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Proof. By (5) one has S = (wa/wn) fap, With a = d — n and
b = dim sy, — dimpry = q —q (Section 4.1b). The theorem follows from
Proposition 6 and Section 3.2. U]

Theorem 8 encompasses Helgason’s Theorems 4.5 and 4.17 in [9], Chapter I
(with different normalizations from ours), as well as some generalizations (next
1 section). See also Grinberg [5] for the case of projective spaces, where the
. polynomial Py 18 related to representation theory.

4.3 EXAMPLES

| According to assumption (ii), three types of totally geodesic Radon
transforms can be inverted by Theorem 8. Putting aside the case of even-
~ dimensional planes in the Euclidean space X = R, we now describe some
examples of the latter two.

The space X = G/K is then one of the hyperbolic spaces, and the dual
space Y consists of all geodesic submanifolds g-Exp s, g € G, where s C p
is an even-dimensional Lie triple system. Let a = RH be any line in p, and
p=adps D pr be the corresponding root space decomposition.

a. A simple example is s = aDp2q, assuming poe 7 0. Classical bracket
relations (e.g. [8], p.335) imply that s is a Lie triple system and, reading
dim py,, from the classification of rank one spaces, dims is 2, 4 or 8 ; here
s =0 and sy = Poa-

b. Another example is § = p,, assuming this space is even-dimensional.
Bracket relations show s is a Lie triple system. To obtain compatible root
space decompositions of s and p we replace H by an H' € s, whence the
new root space decompositions with respect to a = RH'

p=a ®p, Dy, 5=0 D5y D5n,-
It follows again from the classification that pj, and s5, have the same
dimension in all cases, therefore coincide (Helgason [7], p. 171, or [9], p. 168).

This example is motivated by the Radon transform on antipodal manifolds of
compact symmetric spaces of rank one (loc. cit.).

c¢. TOTALLY GEODESIC TRANSFORM ON CLASSICAL HYPERBOLIC SPACES. Let
X = H™(F) with F =R, C, or H, be one of the classical hyperbolic spaces.
Then X = G/K with G = U(1,m;F), K = U(1;F) X U(m;F), and the Cartan
decomposition is g = €@ p where p, the space of all matrices
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0 ‘71 Vm
Vi
V= X , V,eF,
: (0)
Vin

can be identified with F”.
Let V-W =" V,W;. For U,V,W € p = F™, easy computations lead to

(7 [U,[V,Wl=U\V-W—-W-V)—-V(W-U)+WV-U)

(F™ being considered as a F-vector space, with scalars acting on the right).
It follows that any F-subspace s of p is a Lie triple system. Similarly, the
natural inclusions R™ C C™ C H™ show that any R-subspace of p N R™, or
any C-subspace of p N C™, is a Lie triple system.

Let H # 0 be an element of p. The eigenspaces of (ad H)*> can be
obtained from (7), whence the decomposition

p=aDps P h2a ,a:RH,
po={VEp|H-V=0}, poo={HN|XEF, \+X=0},

with respective eigenvalues 0, H-H and 4 (H-H). A similar decomposition
holds for s, if H is chosen in s. The spaces a @ pr, = HF and p, are
F-subspaces of p, therefore Lie triple systems (as mentioned in a and b
above). More generally, Theorem 8 applies to the following four families of
totally geodesic submanifolds Exp s; all superscripts in the table are real
dimensions, with k,[,m strictly positive integers.

X dimp, | dimpy, | s | dims, | dimsy, | Yo =Exp s
H"R) | m—1 0 (1) | 2k—1 0 H?*(R)
H™C) | 2m—2 1 ) | 2k—2 1 H*(C)
H"(H) | 4m — 4 3 3) | 2k—2 1 H*(C)
H*"(H) | 4m — 4 3 4) | 41—4 3 H*(H)

Case (1): s is any R-subspace of p = R™, with dimgs = 2k < m.
Case (2): s is any C-subspace of p = C™, with dimcs =k < m.

Case (3): s is any C-subspace of C™ C p = H”, with dimcs = k < m.
Case (4): 5 is any H-subspace of p = H”, with dimgs =1 < m.
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d. HOROCYCLE TRANSFORM ON REAL HYPERBOLIC SPACES. Proposition 6
also applies to this case, because of the similarity between the functions S
obtained in Propositions 4 and 5.

Following the same steps as for geodesic submanifolds, one can find a
polynomial of the Laplacian with fundamental solution § (case ¢ = 0 in
Proposition 5). Indeed S(r) is now, up to a constant factor, f_l,z_n(r/Z) n
the notation of Section 4.2 with € = 1. Let

Ayg = 0 + (pcothr + 2g coth 2r) O,

. be the radial part of the Laplacian and ¢(r) = f(r/2). Then

4 (Ap09) () = (A0, f) (r/2) ;

note that the roles of p and g have been interchanged. The next theorem

now follows from Propositions 5 and 6, with n = 2k + 1, ¢ = 1 and
b=1—-p=2—n.

THEOREM 9 (Helgason). The horocycle Radon transform on the odd-
dimensional hyperbolic space X = H¥L(R), k> 1, is inverted by

Cu = Qx(L)R*Ru

where u € ‘D(X), L is the Laplace-Beltrami operator of X,

™k 2k — 1)! i _ ,
C= (—‘2‘) Uc——DT’ Or(x) = H(x +j2k —7)) .

j=1

In [11], p.210, the normalization of the Riemannian metric on X differs
from ours.

The result extends to the horocycle transform on a Riemannian symmetric

~space X = G/K of the noncompact type, provided that the Lie algebra g has
~ only one conjugacy class of Cartan subalgebras (see Corollary 20 below). The
- spaces H**'(R) in Theorem 9 are the rank one spaces among those.
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