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The latter expression follows from the change of variables (x, r) i-» (x, y),
with Jacobian sinh 2r ; here

/»cosh r—1
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Setting x ficoshr — 1) we find
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by Euler's integral formula for the hypergeometric function. From a quadratic
transformation formula for iF\ ([3], p. 113, formula (35)) we finally obtain

/(r) 2("_ 1)/2w„_i(sinhr)"_2(coshr)<? 2^1 y ~y~; ~ sinh2 r) •

Thus, for K-invariant u,

/ u(n - x0)dn / w (exp(r//) • x0) S(r) A(r) dr= u(x) S(x) <ix,
jn Jo Jx

where A(r) cjn(sinhr)n_1 (cosh r)^ and S(r) /(r)/A(r).

3.2 Radon inversion by convolution

Radon inversion formulas will follow from Section 3.1 if we can solve for
u the convolution equation u* S R*Ru, in the form

(2) u DR*Ru.

To recover u(x) from Ru the recipe will be to integrate Ru(y) over all y
incident to x, and to apply the operator D on the x variable.

As noted in the proof of Proposition 3, R*R commutes with the action

of G on A, and it is natural to look for a D with the same property, i.e. a

convolution operator: if T is a distribution on X such that S*T — S, then
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u (R*Ru) * T.

Though the question can be tackled by harmonic analysis on X (cf. Section 5),

a G-invariant linear differential operator D can sometimes be found directly,
such that DS S. Then (2) follows from the equality u u* DS D(u * S).

Indeed, for any test function ip,

{D(u * S), p) (u * S,*Dip)

(u(g Xo), {S, ('Dip) o by (1)

{u(g x0),(S* Dipo r{g)))),
since the transpose operator is G-invariant too, as follows from the

existence of a G-invariant measure on X. Finally,

(Diu * S), p) u(gx0), (DS, p o r(g)))
(u * DS, (p),

as claimed; assuming G unimodular (as in [9], p. 291) is thus unnecessary here.

The method applies whenever we can find a G-invariant differential
operator D on X with given fundamental solution S. We shall now investigate
this question on the basis of Propositions 4 and 5.

4. Radon transforms on isotropic spaces

Throughout this section X will be an isotropic connected noncompact
Riemannian manifold, that is a Euclidean space or a Riemannian globally
symmetric space of rank one :

X R" or Hm(R),Hlm(C),H4m(H), Hi6(0),

where all superscripts denote the real dimension of these real, complex,
quaternionic or Cayley hyperbolic spaces (cf. Wolf [18], §8.12). We first
try to invert the d-geodesicRadon transform on X, defined by integrating
over a family of J-dimensional totally geodesic submanifolds of At the
end of this section we shall see that the same tools provide an inversion
formula for the horocycle Radon transform on H2k+l(R).

4.1 Totally geodesic submanifolds

Our first goal is to describe these submanifolds and the corresponding
functions S in Proposition 4.
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