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INVERTING RADON TRANSFORMS 215

3. CONVOLUTION ON X AND INVERSION OF R

3.1 A CONVOLUTION FORMULA

Again G is a Lie group, K a compact subgroup, X = G/K and 7(g)
denotes the natural action of G on X, ie. 7(¢)x = g - x.

a. A GENERAL RESULT. Let S1,8; € D'(X) be two distributions on X,
with S, assumed K-invariant. By analogy with the group case (if K were
the trivial subgroup), the convolution §; * S, € D’(X) can be defined by

(1) (S1 % 52, 0) = (S1(91K), ($2(92K), ©(9192K)) )
= (81(g1K), (S2, 0 0 T(q1))) ,

for any ¢ € D(X). Indeed, the K -invariance of S, implies that (S2,007(g1))
is a right K -invariant function of g; € G, hence defines a function of gKeX
to which §; can be applied (assuming that S; or S, has compact support).
A more classical definition ([9], p.290) of S; xS, arises from the convolution
on the group G itself, by means of the projection G — G/K; it is easily
checked that both definitions agree, but (1) will be more convenient here (and
could be used even if K were not compact).

PROPOSITION 3. Let X = G/K with K compact, and assume that
Y = G/H has a G-invariant measure. For any u € C.(X) we have

R'Ru=uxS,

a convolution on X. Here, denoting by § the Dirac measure at the origin
Xo = K of X, the distribution S = R*RS is the K -invariant measure on X
given by

(S,u) = R*Ru(x,) = / u(kh - x,) dk dh = Rug(y,),
KxH

with ug(x) = [ u(k -x)dk and y, = H.

Proof.  The definition of the Radon transforms R and R* clearly show
that they intertwine the actions of G on X and Y (here denoted by 7x(g),
resp. 7y(g), for g € G):

R(uo7x(9)) = (Ru) o 7v(9),  R*(v o 7y(g)) = (R*v) o 7x(g) .

Therefore R*R commutes with 7x(g), hence is a right convolution operator.
Indeed, let ¢ € D(X) be a test function. The distribution S defined by
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(S,) = R*Rp(x,) extends to a K-invariant positive linear form on C.(X),
1.e. a measure, and

(uxS, ) = (ug - x,), (S, ¢ o x(9))) by (1)

= (
= (u(g - x,), R"R(¢p o 7x(9))(x,))
= <u(g : xo)a (R*RQD)(Q 'x0)>
= (u,R*Rp) = (R*Ru, ¢) .

The last equality follows from the duality between R and R* (Proposi-
tion 2). [

b. TOTALLY GEODESIC TRANSFORM ON ISOTROPIC SPACES. The following
variant of Proposition 3 gives a more precise statement in a specific situation.
Unifying and extending several results from the literature on totally geodesic
Radon transforms on two-point homogeneous spaces (Helgason [9], p. 104,
124 and 160, Berenstein and Casadio Tarabusi [1] p.618), it will lead to
inversion formulas. Let X = G/K be an isotropic connected non compact
Riemannian manifold with distance d, where G is a transitive Lie group of
isometries of X and K is the isotropy subgroup of some origin x, € X. Let
y, be a totally geodesic submanifold of X, containing x,, and let Y be the
set of all submanifolds y = g -y, of X, with g € G. We denote by A(r),
resp. A,(r), the Riemannian measure (area) of a sphere of radius r in X,
resp. in y,.

As explained in Section 4.1a below, Lemma 1 applies to this situation
and the Radon transform can be written as

Ru(y) = /u(x) dmy(x), uecC(X), yeY,
y

where dm, is the Riemannian measure induced by X on its submanifold y,
and

R*v(g - x,) = /Kv(gk-yo)dk, veCX),geq.
Note that we will not need here the group H nor an invariant measure on G/H,
as opposed to Proposition 3.
PROPOSITION 4. With the above notation we have, for any u € C.(X),
R*'Ru=uxS
(convolution on X ), where S is the K -invariant function on X defined by

S@x) = Ao(n/A(r), 1 =d(xp,%).

1
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An explicit formula (4) for § will be given in Section 4.1, after we
introduce the relevant notations.

Proof. Fix z=g-x, € X. The measure dm, on y = gk -y, corresponds
to the measure dm, on y, by the isometry x +— gk -x, whence

R*Ru(z) :/ (/ u(gk-x)dk) dm,(x) .
y K

Now, X being isotropic, K -orbits are spheres centered at x,. Since f dk =1,
the above integral over K is the mean value (M,u)(z) of u over the sphere
2(z,r) with center z and radius r = d(x,,x). Therefore

1
/Ku(gk -x)dk = (M,u) (z) = m e udo

where do is the Riemannian measure on X(z,r), and

R*Ru(z) = | (M) (2) dmy(x) .

Yo
But, y, being totally geodesic, the distance r = d(x,,x) between two points
of y, is the same in X and in y,, and the latter integral can thus be computed
in geodesic polar coordinates on y, (with center x,), as

R*Ru(z) = / (M) (2) Ao(r) dr
0

_ /O (M) (D) A(F () dr

with f(r) = A,(r)/A(r). This in turn can be viewed as an integral over X
computed in polar coordinates (with center z), namely

R*Ru(z) :/ f(r)dr/ udo :/u(x)f(d(z,x))dx.
0 2(z,r) X
Setting z=g-x,, x =g’ -x, it follows that, for any test function v € DX),
/ R*Ru(2) p(2) dz = / u(g' - x0) f(d(g - X0, 9" - %,)) (g - x5) dg'dyg .
X GxG

Changing the variable g into g = ¢’¢” (with fixed ¢’) in [dg, we obtain
from the left invariance of dg

/X R*Ru(z) o(z)dz = / u(g' - %) f(d(g" - x0,%,)) p(g'g" - x,) dg'dg"
GXG

= (uxS,p),
according to (1) and the definition of S in the proposition.  []
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¢. HOROCYCLE TRANSFORM ON RANK ONE SPACES. Let X = G/ K be a
Riemannian symmetric space of the noncompact type, G = KAN an Iwasawa
decomposition (cf. Notations, d) and ¥ = G/MN the space of all horocycles
in X. The corresponding dual Radon transforms are

Ru(gMN) = /

N
for u € C(X), v € C(Y); MN has been replaced by N in the right-hand
sides because K contains M.

We now specialize to rank one spaces, with positive roots « and
(possibly) 2ce. Let H be the basis vector of a such that ou(H) = 1. Multiplying
the Killing form scalar product on g by a suitable factor, it will be convenient
to assume that the corresponding norm on p satisfies ||H| = 1.

u(gnK) dn, R*v(gK):/v(gkN)dk
K

The exponential mapping exp : n = g, ® g, — N is a diffeomorphism
onto, with Jacobian 1 ; the Haar measure dn on N can therefore be chosen
so that ’

/ f(n)dn = / flexp(Z + T)) dZdT ,
N Ja XP2a

where dZ, resp. dT, is the Lebesgue measure on g, , resp. go,, corresponding
to the norm || ||.

Let p = dimg,, ¢ = dimgy,, p = @P/2)+q, n=p+qg+1=dimX,
and w, = 27%/%/T(n/2). With the above normalizations we now have the
following analogue of Proposition 4.

PROPOSITION 5. For the horocycle Radon transform on X, a rank one
Riemannian symmetric space of the noncompact type, and u € C.(X) we have
R'Ru=uxS,

(convolution on X ). Here S is the radial function on X given by

Wn—1

S(r) = 2= D/2

1 g B—1
: (sinhr)_lel(pz ,g;"z ;—sinhzr),

with r > 0. For X = H*(R), i.e. ¢ =0, this reduces to

3—n
S(r) = 20=D/22 =L (Ginh )1 (cosh f) .
Wy, 2

Proof. We first assume g = 0. The groups G and MN being unimod-
ular, the space ¥ = G/MN has a G-invariant measure ([11], p.100). By
Proposition 3 it follows that R*Ru = u * S, with
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(S, u) :/u(n-xo)dn:/ u(expZ - x,)dzZ
N g

for any K-invariant function u on X (this will suffice to find the K -invariant
function S). ’

By classical rank one computations ([8], p.414), the radial component
exp(rH) of expZ is given by

| expZ - x, = kexp(rH) - x, ,
with k € K, r >0 and ||Z|| = 2+/2sinh(r/2). Using spherical coordinates in

go = R*71 it follows that, for K -invariant u,

/ u(n - x,)dn = / u(Exp rH) f(r)dr,

N 0

with

n—2

f(r) = 2(3/2)(”‘1)_1wn_1 (sinh %) cosh% .

- On the other hand, using the diffeomorphism Exp and spherical coordinates
on p we have

/ u(x)dx = /OO u(Exp rH)A(r)dr , with A(r) = w,(sinh r)"~!
X 0

(cf. Section 4.1b for more details). If S(r) = f(r)/A() we thus have, for
- K-invariant u,

/ u(n - x,)dn = /OO u(Exp rH) S(r)A(r) dr = / u(x) S(x) dx
N 0

| X
-as claimed.

 The case g = 1 will not be used in the sequel; we sketch its proof, similar
‘to that of the case ¢ = 0. First

(S,u) = / u(n - x,)dn = / ulexp(Z+T) - x,)dZ dT .
N BaXH2a
'Then, by rank one computations ([8], p.414),
exp(Z +T) - x, = kexp(rH) "Xo, keEK,
1 >
cosh? r = (1 + ZHZ||2> + 5||T||2, r>0.

%Let x=Z|*/4, y = IT||*/2. Using spherical coordinates in g, = RP and
920 = R? we obtain
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o0 (o @]
/N u(n - x,)dn = 20~/ Z)wpwq /0 /0 u(exp(rH) - x,) x®/P1 y(q/ D=ldx dy

= /OO u(exp(rH) - x,) f(r) dr .
0

The latter expression follows from the change of variables (x,r) — (x,y),
with Jacobian sinh2r; here

coshr—1
f(rny)=2° —2+(a/ 2)wpwq sinh 2r / x /D1 (c:osh2 r—(1+ x)z)(q/z)_1 dx .
0
Setting x = t(coshr — 1) we find
f(r) = 2@p+a)/ 201 (sinh r)q (Sinh %) coshr

F((p"'Q)/Z) : @/D—11 _ ala/2—1 5 T (g/2)—1
T /2T @/2) /s t (1 -1 <1+ttanh 5) dt

q—1 p
= 206r+a/2,, | <sinh r) (sinh %) coshr
p q.p+q 2 ¥
A(21-408 ann? 2,
i\t Ty Ty TR
by Euler’s integral formula for the hypergeometric function. From a quadratic
transformation formula for ,F; ([3], p. 113, formula (35)) we finally obtain

—1 —1
f(r) = 2=D/2, _ (sinh )" *(coshr)? ,F; <p 5 g; z 55 sinh® 7’) :

Thus, for K-invariant u,
/ u(n - x,)dn = /OO u(exp(rH) - x,) S(r)A(r)dr = / u(x) S(x) dx,
N 0 X
 where A(r) = wy(sinhr)""!(coshr)? and S(r) = f(r)/A(r). [

3.2 RADON INVERSION BY CONVOLUTION

Radon inversion formulas will follow from Section 3.1 if we can solve for
u the convolution equation u xS = R*Ru, in the form

(2) u = DR*Ru .

To recover u(x) from Ru the recipe will be to integrate Ru(y) over all y
incident to x, and to apply the operator D on the x variable.

As noted in the proof of Proposition 3, R*R commutes with the action
of G on X, and it is natural to look for a D with the same property, i.e. a
convolution operator: if 7 is a distribution on X such that S+ 7 = §, then
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