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3. Convolution on X and inversion of R

3.1 A CONVOLUTION FORMULA

Again G is a Lie group, K a compact subgroup, X G/K and r(g)
denotes the natural action of G on X, i.e. r(g)x g x.

a. A general result. Let S\,S2 V'(X) be two distributions on X,
I with 5*2 assumed /^-invariant. By analogy with the group case (if K were
I the trivial subgroup), the convolution S\ * S2 G T>'(X) can be defined by

I W (^1 *^2,^) (S\(g\K), (52(^2^), (p(g\g2K)))

I ={SIM,(S2^O%)}},
j for any p G T>(X). Indeed, the K-invariance of S2 implies that (5*2, p o r(gi))
j is a right A-invariant function of gx G G, hence defines a function of giA G X
j to which Si can be applied (assuming that S\ or £2 has compact support).

A more classical definition ([9], p. 290) of S\ *£2 arises from the convolution
j j on the group G itself, by means of the projection G —> G/K ; it is easily

checked that both definitions agree, but (1) will be more convenient here (and
; could be used even if K were not compact).

1 PROPOSITION 3. Let X G/K with K compact, and assume that
I Y G/H has a G-invariant measure. For any u G Cc(X) we have

R*Ru u* S,

j a convolution on X. Here, denoting by ö the Dirac measure at the origin
x° K of X, the distribution S R*RÖ is the K-invariant measure on X
given by

(S, u) R*Ru(x0) / u(kh • x0)dkdh RuK(y0),
JkxH

with uK(x) JK u(k x) dk and yQ ~ H.

Proof The definition of the Radon transforms R and R* clearly show
j that they intertwine the actions of G on A and Y (here denoted by tx(q)

resp. TY(g), for geG):

I R(u O TX(g)) (Ru) o TY(g), R*(v o rY(g)) (R*v) o rx(g).
j

Therefore R*R commutes with rx(g), hence is a right convolution operator.
Indeed, let p g V(X) be a test function. The distribution S defined by
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{S,p) — R*R(p(x0) extends to a K-invariant positive linear form on Cc(X),
i.e. a measure, and

(u * S,<p) (u(g Xo),(S,ipO by (1)

The last equality follows from the duality between R and R* (Proposition

2). n

b. Totally geodesic transform on isotropic spaces. The following
variant of Proposition 3 gives a more precise statement in a specific situation.

Unifying and extending several results from the literature on totally geodesic
Radon transforms on two-point homogeneous spaces (Helgason [9], p. 104,

124 and 160, Berenstein and Casadio Tarabusi [1] p. 618), it will lead to

inversion formulas. Let X G/K be an isotropic connected non compact
Riemannian manifold with distance d, where G is a transitive Lie group of
isometries of X and K is the isotropy subgroup of some origin x0 £ X. Let

yQ be a totally geodesic submanifold of X, containing x0, and let Y be the

set of all submanifolds y g - y0 of X, with g G G. We denote by A(r),
resp. A0(r), the Riemannian measure (area) of a sphere of radius r in X,
resp. in y0.

As explained in Section 4.1a below, Lemma 1 applies to this situation

and the Radon transform can be written as

where dmy is the Riemannian measure induced by X on its submanifold y,
and

Note that we will not need here the group H nor an invariant measure on G/H,
as opposed to Proposition 3.

PROPOSITION 4. With the above notation we have, for any u G Cc(X),

(convolution on X), where S is the K-invariant function on X defined by

(u(g x0),R*R(p o TX(g))(x0))

(u(g Xo), R*Rp)xa))

(u,R*Rip)

Ru(y) / u(x) dmy(x), u G Cc(X), y G Y

R*Ru u* S

S(x) Aa(r)/A(r),r d(xa, x).
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An explicit formula (4) for S will be given in Section 4.1, after we
introduce the relevant notations.

Proof. Fix z g - x0 G X. The measure dmy on y — gk - yQ corresponds
to the measure dm0 on y0 by the isometry jch gk-x, whence

Now, X being isotropic, K-orbits are spheres centered at x0. Since JRdk 1,
the above integral over K is the mean value (Mru) (z) of u over the sphere
X(z, r) with center z and radius r d(x0, x). Therefore

where da is the Riemannian measure on X(z, r), and

But, y0 being totally geodesic, the distance r d(xQ, x) between two points
of y0 is the same in X and in y0, and the latter integral can thus be computed
in geodesic polar coordinates on yQ (with center x{)), as

POO

R*Ru(z)= / (Mru)(z)A0(r)dr
Jo

POO

/ (Mr
Jo

with f(r)A0(r)/A(r). This in turn can be viewed as an integral over X
computed in polar coordinates (with center namely

Setting z g x0, x g' x0 it follows that, for any test function <g e 'D(X),

Changing the variable g into g g'g" (with fixed g' in we obtain
from the left invariance of dg

— (u*S,<p)
according to (1) and the definition of S in the proposition.
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c. Horocycle transform on rank one spaces. Let X G/K be a

Riemannian symmetric space of the noncompact type, G KAN an Iwasawa

decomposition (cf. Notations, d) and Y G/MN the space of all horocycles
in X. The corresponding dual Radon transforms are

Ru(gMN) I u(gnK) dn R*v(gK) [ v(gkN)dk
Jn Jk

for u G Cc(X), v G C(F) ; MN has been replaced by N in the right-hand
sides because K contains M.

We now specialize to rank one spaces, with positive roots a and

(possibly) 2a. Let H be the basis vector of a such that a(H) 1. Multiplying
the Killing form scalar product on g by a suitable factor, it will be convenient
to assume that the corresponding norm on p satisfies ||i/|| 1.

The exponential mapping exp : n ga ® g2a —» N is a diffeomorphism
onto, with Jacobian 1 ; the Haar measure dn on N can therefore be chosen

so that

f f(n) dn f f(exp(Z + T)) dZdT,
JN J gaxg2a

where dZ, resp. dT, is the Lebesgue measure on ga, resp. g2a, corresponding
to the norm || ||.

Let p — dimga, q dimg2a, P (p/2) + q, n p + q + I dimX,
and con m 2iin/2/T{n/2). With the above normalizations we now have the

following analogue of Proposition 4.

PROPOSITION 5. For the horocycle Radon transform on X, a rank one
Riemannian symmetric space of the noncompact type, and u G Cc{X) we have

R*Ru u * S,

(convolution on X Here S is the radial function on X given by

S{r) 2(jl~v>/2—(sinh r)~1 L - sinh2
con \ 2 2 2 J

with r > 0. For X — Hn(R), i.e. q 0, this reduces to

S(r) 2{jl~x^2LOn 1

(sinhr)"1 fcosh
Lün V 2 J

Proof. We first assume q 0. The groups G and MN being unimod-
ular, the space Y — G/MN has a G-invariant measure ([11], p. 100). By
Proposition 3 it follows that R*Ru u* S, with
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(S, u}= u(n • x0) dn= w(exp Z • x0) dZ
Jn JQa

for any ^-invariant function m onl (this will suffice to find the ^-invariant
function S).

By classical rank one computations ([8], p. 414), the radial component
exp{rH) of expZ is given by

exp Z - x0 k exp(rH) x0

with k e K, r > 0 and ||Z|| &a 2\/2sinh(r/2). Using spherical coordinates in
fla — R"_1 it follows that, for K-invariant u,

/ u{n • x0) dn — u{Exp rH)f(r) dr,
Jn Jo

with

n—2

f(r) (sinh0f cosh -2
; On the other hand, using the diffeomorphism Exp and spherical coordinates
j on p we have

[ u(x) dx [ w(Exp rH)A{r)dr with A(r) ^(sinhr)"-1Jx Jo

; (cf. Section 4.1b for more details). If S(r) we thus have, for
; TT-invariant u,

u(n x0) dnM(Exp dr J u(x) S{x) dx,

as claimed.

The case q > 1 will not be used in the sequel ; we sketch its proof, similar
to that of the case q 0. First

(S,w)/ u(n x0) dn/ w(exp(Z +
JN JqocXQ 2C

Then, by rank one computations ([8], p. 414),

i exp(Z + D-x0= k exp(r//) • xQ k e K,

cosh2 r^1 + ^ l|Z||2^ + l-\\T\\2, 0.

Let * ||Z||2/4, y \\T\\2/2. Using spherical coordinates in ga R'J and
>92a R*' we obtain
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P rOO nOO

/ u(n - x0)dn 2p~2^q^T}üüpu;q / / u(exp(rH) • x0)x(p^T}~1y(-q^2)~ldxdy
JN Jo Jo

rOO

/ w(exp(r#) • x0)f(r) dr.
Jo

The latter expression follows from the change of variables (x, r) i-» (x, y),
with Jacobian sinh 2r ; here

/»cosh r—1

/(r) 2P~2+^q^ujpujq sinh2r / x^/2)_1 (cosh2 r — (1 + x)2)
^ dx.

Jo

Setting x ficoshr — 1) we find

fir) 2(3;7+^)//2a;n_i ^sinh ^sinh ^ j cosh r

* RjSÄ jf ,W8"'(1 " ('+ "w -D'"2'"*
r(p/2)F(q/2) J0

_ 2^pJrq)/2ujn_i ^sinh r^j ^sinh 0
q-\ f r\p coshr

by Euler's integral formula for the hypergeometric function. From a quadratic
transformation formula for iF\ ([3], p. 113, formula (35)) we finally obtain

/(r) 2("_ 1)/2w„_i(sinhr)"_2(coshr)<? 2^1 y ~y~; ~ sinh2 r) •

Thus, for K-invariant u,

/ u(n - x0)dn / w (exp(r//) • x0) S(r) A(r) dr= u(x) S(x) <ix,
jn Jo Jx

where A(r) cjn(sinhr)n_1 (cosh r)^ and S(r) /(r)/A(r).

3.2 Radon inversion by convolution

Radon inversion formulas will follow from Section 3.1 if we can solve for
u the convolution equation u* S R*Ru, in the form

(2) u DR*Ru.

To recover u(x) from Ru the recipe will be to integrate Ru(y) over all y
incident to x, and to apply the operator D on the x variable.

As noted in the proof of Proposition 3, R*R commutes with the action

of G on A, and it is natural to look for a D with the same property, i.e. a

convolution operator: if T is a distribution on X such that S*T — S, then
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u (R*Ru) * T.

Though the question can be tackled by harmonic analysis on X (cf. Section 5),

a G-invariant linear differential operator D can sometimes be found directly,
such that DS S. Then (2) follows from the equality u u* DS D(u * S).

Indeed, for any test function ip,

{D(u * S), p) (u * S,*Dip)

(u(g Xo), {S, ('Dip) o by (1)

{u(g x0),(S* Dipo r{g)))),
since the transpose operator is G-invariant too, as follows from the

existence of a G-invariant measure on X. Finally,

(Diu * S), p) u(gx0), (DS, p o r(g)))
(u * DS, (p),

as claimed; assuming G unimodular (as in [9], p. 291) is thus unnecessary here.

The method applies whenever we can find a G-invariant differential
operator D on X with given fundamental solution S. We shall now investigate
this question on the basis of Propositions 4 and 5.

4. Radon transforms on isotropic spaces

Throughout this section X will be an isotropic connected noncompact
Riemannian manifold, that is a Euclidean space or a Riemannian globally
symmetric space of rank one :

X R" or Hm(R),Hlm(C),H4m(H), Hi6(0),

where all superscripts denote the real dimension of these real, complex,
quaternionic or Cayley hyperbolic spaces (cf. Wolf [18], §8.12). We first
try to invert the d-geodesicRadon transform on X, defined by integrating
over a family of J-dimensional totally geodesic submanifolds of At the
end of this section we shall see that the same tools provide an inversion
formula for the horocycle Radon transform on H2k+l(R).

4.1 Totally geodesic submanifolds

Our first goal is to describe these submanifolds and the corresponding
functions S in Proposition 4.
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