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212 F. ROUVIERE

2.2 GROUP-THEORETIC RADON TRANSFORMS

Let G be a real Lie group and K a (closed) Lie sugbroup, equipped
with left-invariant Haar measures dg, dk respectively. If the homogeneous
space G/K admits a G-invariant measure d(gK), the measures can then be
normalized so that

f f(g)dg = / d(gK) / f(gh)dk,
G G/K K

for any f € C.(G). This applies in particular if K is compact (on invariant
measures, see [9], Chap.1, §1).

Throughout the paper G will be a Lie group, K a compact subgroup,
and H a (closed) Lie subgroup of G. The Haar measure dk of K will be
normalized by [, dk=1.

Let u be a (complex-valued) function on X = G/K. Its Radon transform
is the function Ru on Y = G/H defined by

Ru(gH):/u(ghK)dh,
H

for g € G, whenever this makes sense (e.g. if u € C.(X)). The left invariance
of dh implies that the integral only depends on the left coset gH of g.
Given y = gH in Y = G/H, the value Ru(y) is an integral of u over all
x incident to y. A more precise statement can be given in the following
important example.

EXAMPLE. Let X be a connected Riemannian manifold, G a transitive Lie
group of isometries of X and K the isotropy subgroup of some origin x, € X ;
then K is compact ([8], p.204) and X = G/K. Let y, be a given closed
submanifold of X, containing x,, and let Y be the set of all submanifolds
y=g-y, of X, with g € G.

The set H of all h € G such that -y, =y, (i.e. the submanifold y, is
globally invariant under k) is a closed Lie subgroup of G. Indeed if h, € H
converges to h in G, for any x € y, the point lim#h, - x = h - x belongs
to y,; similarly A~'-x € y,, so that k-y, = y,. Thus ¥ = G/H can be
endowed with a structure of manifold and we obtain a double fibration of
homogeneous spaces.

The following lemma allows one to compute the Radon transform without
knowing H explicitly.
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LEMMA 1. Keeping the notation of this example, assume furthermore that
yo = G’ - x, is a closed orbit of the origin x, = K under some Lie subgroup
G of G.

Then G’ C H C G'K and y, = H - x,. The incidence relation between
X = G/K and Y = G/H is simply x € y. Besides, the left-invariant Haar
measures dh,dqg’ of the groups H,G' can be normalized so that

Ru(y) = / u(gh - x,) dh = / u(gq’ - xo)dg
H 4

= / u(x) dmy(x) ,

y

where dm, is the Riemannian measure induced by X on its submanifold
Y=g Yo-

REMARK. The subgroup H can of course be strictly bigger than G’.
This occurs for instance if y, is a line in X = R” and G’ is the group of
translations along this line, or a horocycle in a Riemannian symmetric space
X of the noncompact type (for which G’ = N and H = MN = NM in the
usual semisimple notations).

Proof of Lemma 1. 1If y, = G’ -x,, then H obviously contains G’ and it
follows that

Yo=G -x,CH-x,CYy,,

whence H -x, = G -x, and H C G'K.

A point x € X is incident to y = g -y, € Y if and only if there exists
h € H such that x = gh-x,,ie. x€gH -x, =g -y, =Y.

An isometry g transforms the Riemannian measure of y, into the
Riemannian measure of y = ¢ -y,, and it suffices to prove the integral
formula for ¢ = e. Now y, = H - x, can be identified to the homogeneous
space H/(H N K), and dmy, (which is invariant under all isometries of Vo)
to an H-invariant measure on this space. The Haar measure dh can therefore
be normalized so that the corresponding measure on H /(HNK) satisfies

| / u(x) dmy, (x) = / u(h - x,) d(h(H N K))

Yo H/(HNK)

H

The proof is similar for |, o » Whence the lemma. [
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Going back to general double fibrations, the Radon dual transform of a
(continuous, say) function v on Y = G/H is the function on X = G/K
defined by

R*v(gK):/U(ng)dk,
K
for g € G, an integral of v over all y incident to x = gK. The word “dual”
1s of course motivated by the classical projective duality between points
and hyperplanes in the basic example, but it also stems from the following
proposition.

PROPOSITION 2. Let X = G/K with K compact, and assume that
Y = G/H has a G-invariant measure. Let u € C.(X), v € C(Y). Then
Ru e C.(Y), R*v € C(X) and

/ u(x) R*v(x) dx = /Ru(y) v(y)dy = / u(x)v(y)dz,
X Y z ;

where dx,dy,dz are the respective G-invariant measures on X,Y .and
Z=G/(KNH).

In the latter integral u(x)v(y) is considered as a function of z = (x,y) on Z
(Section 2.1). We omit the proof, a classical exercise on invariant integrals
(ctf. [9], p. 144 and [11], p.41); all groups are assumed unimodular there, but
the proof only uses the invariant measures on the homogeneous spaces, thus
extends to the present situation.

Proposition 2 allows a natural extension of the transforms R and R* to
distributions. Given u € £'(X), the distribution Ru € £'(Y) is defined by

(Ru,v) = (u,R*v),

for all test functions v € C*°(Y). Similarly, given v € D/(Y), the -distribution
R*v € D'(X) is defined by

(R*v,u) = (v,Ru) ,

for all u € D(X). Again we refer to Helgason ([11], p.42) for details, based
on the compactness of K. These definitions do extend the Radon integrals
for functions, as Proposition 2 shows, when identifying a function u with the
distribution u(x) dx, and similarly for v.
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