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Z1U F. ROUVIÈRE

We briefly recall some classical semisimple notations, as used for instance
in Helgason s books. Let a be a maximal abelian subspace of p. Related
to the restricted root system of the pair (g,a) are the eigenspaces gCï, the
Iwasawadecomposition g f ©a©n of the Lie algebra and G - KAN for the

group (unique decomposition of each element of G into a product of factors
in the respective subgroups); the subgroups A, resp. TV, of G are abelian,
resp. nilpotent. The half sum of positive roots (counted with multiplicities) is
a linear form pona; we write a" e'J<k,sa> for Let resp. M',
denote the centralizer, resp. normalizer, of A in K. Then W / is a
finite group called the Weyl group.

Let y0 denote the orbit N xa C X. The horocycles of X are the
submanifolds gya,for g EG.Since (globally) if and only if
g EA/TV, the space of all horocycles is

e. Isotropic Riemannian symmetric spaces. A Riemannian manifold
X is called isotropic if, for every x E Xand every pair of unit tangent vectors
V, Wto Xatx, there exists an isometry of X leaving x fixed and mapping
F to W. The connected isotropic Riemannian manifolds are the Euclidean
spaces R", the hyperbolic spaces i.e. the Riemannian symmetric spaces of the
noncompact type and of rank one (dim a =1), and their compact analogues,
spheres and projective spaces. The compact spaces will not be considered in
this paper, so that most of our examples will be taken from the list

R", Hn(R),//"(C), //"(H), H16(0).

Among them we shall often restrict ourselves to the classical hyperbolic spaces
//"(F), with F R, C or H.

2. Geometric setting

2.1 Double fibrations of homogeneous spaces

The general group-theoretic setting for Radon transforms, introduced by
Helgason in the sixties, is motivated by the well-known example of points
and hyperplanes in the Euclidean space R". The set of points and the set
of hyperplanes are both homogeneous spaces of the isometry group of R",
and it turns out that the fundamental "incidence" relation (a point x belongs
to a hyperplane y), as well as the defining integral of the Radon transform,
have simple expressions in terms of Lie groups and invariant measures. This
observation suggests considering the following general situation.



INVERTING RADON TRANSFORMS 211

Let X and F be two manifolds, with given origins and y0 G Y,

and assume a real Lie group G acts transitively on both manifolds X and Y.

Two elements x G X and y G Y are said to be incident if there exists some

g £ G such that x g • x0 and y g - y0- Roughly speaking, if we think of

g as a motion, this means that x and y have the same relative position as

the origins x0 and y0.
A more convenient formulation is obtained in terms of the isotropy

subgroups K, resp. H, of x0, resp. y0, in G. They are closed Lie subgroups

of G, and the manifolds X, Y can be identified with the homogeneous spaces

of left cosets G/K, G/H respectively; in particular we may write xQ K,
yQ H, g - x0 gK, etc. The points x g'K G X and y g"H G Y are

then incident if and only if there exists g £ G such that g'K — g • x0 gK
and g"H — g • y0 gH, in other words if the left cosets g'K and g"H, as

subsets of G, are not disjoint (they meet at g).
Given y g"H, we see that x is incident to y if and only if x g"hK

for some h £ H. Given x g'K, the point y is incident to x if and only if
y g'kH for some k £ K.

In the above example X, resp. F, is the set of points, resp. hyperplanes,
of R" and G is the group of all isometries. But hyperplanes can also be

viewed as subsets of X Rn, and the incidence relation boils down to the

familiar "the point x belongs to the hyperplane y" if and only if the chosen

origin x0 belongs to the chosen origin yQ. Lemma 1 below extends this fact
to Riemannian manifolds. More general incidence relations can be considered,
however, and will be helpful in Section 6.

Clearly, the group G acts transitively on the subset Z of X x F consisting
of all incident couples (x,y) (g • x0, g • yQ), with K OH as the isotropy
subgroup of the origin (x0,y0) £ Z. Thus Z G/(K n H) can be endowed
with a structure of manifold, and the present setting can be summarized by
the following double fibration of homogeneous spaces

z G/(K H H) C X x F

i \
X G/K Y G/H f

where the arrows denote the natural projections.
Radon transforms can be studied with more general double fibrations of

manifolds X, F, Z (without groups), as introduced by GeFfand et al. [4]. We
refer to Guillemin and Sternberg ([6], p. 340, 370) for their basic properties;
this theory has been developed in several papers by Boman, Quinto, and others.
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2.2 Group-theoretic Radon transforms

Let G be a real Lie group and K a (closed) Lie sugbroup, equipped

with left-invariant Haar measures dg, dk respectively. If the homogeneous

space G/K admits a G-invariant measure d(gK), the measures can then be

normalized so that

for any / G Cc(G). This applies in particular if K is compact (on invariant

measures, see [9], Chap. I, §1).

Throughout the paper G will be a Lie group, K a compact subgroup,

and H a (closed) Lie subgroup of G. The Haar measure dk of K will be

normalized by fK dk 1.

Let u be a (complex-valued) function on X G/K. Its Radon transform

is the function Ru on Y G/H defined by

for g G G, whenever this makes sense (e.g. if m G Cc(X)). The left invariance

of dh implies that the integral only depends on the left coset gH of g.
Given y gH in Y G/H, the value Ru(y) is an integral of u over all

x incident to y. A more precise statement can be given in the following

important example.

Example. Let X be a connected Riemannian manifold, G a transitive Lie

group of isometries of X and K the isotropy subgroup of some origin xQ G X ;

then K is compact ([8], p.204) and X G/K. Let y0 be a given closed

submanifold of X, containing x0, and let Y be the set of all submanifolds

y — g ' y0 of X, with g G G.

The set H of all h G G such that h - yQ y0 (i.e. the submanifold y0 is

globally invariant under h) is a closed Lie subgroup of G. Indeed if hn G H

converges to h in G, for any x G y0 the point lim hn • x h • x belongs

to y0 ; similarly h~l • x G y0, so that h • ya y0. Thus Y G/H can be

endowed with a structure of manifold and we obtain a double fibration of

homogeneous spaces.

The following lemma allows one to compute the Radon transform without

knowing H explicitly.

Ru(gH) I u(ghK) dh
JH
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LEMMA 1. Keeping the notation of this example, assume furthermore that

y0 G' • x0 is a closed orbit of the origin x0 K under some Lie subgroup

Then G' C H C G'K and yQ H • x0. The incidence relation between

X G/K and Y G/H is simply x G y. Besides, the left-invariant Haar
measures dh,dg' of the groups //, Gr can be normalized so that

where dmy is the Riemannian measure induced by X on its submanifold
y 9-y0•

Remark. The subgroup H can of course be strictly bigger than G'.
This occurs for instance if y0 is a line in X R" and G' is the group of
translations along this line, or a horocycle in a Riemannian symmetric space
X of the noncompact type (for which G' TV and H MN NM in the
usual semisimple notations).

Proof of Lemma 1. If y0 G' -x0, then H obviously contains G' and it
follows that

whence H • x0 — G' - x0 and H C G'K.
A point x e X is incident to y g y0 e Y if and only if there exists

h G H such that x gh x0, i.e. x G gH x0 g • y0 y.
An isometry g transforms the Riemannian measure of yQ into the

Riemannian measure of y g • y0, and it suffices to prove the integral
formula for g e. Now y0 H - x0 can be identified to the homogeneous
space H/(H(1K), and dmyo (which is invariant under all isometries of y0)
to an //-invariant measure on this space. The Haar measure dh can therefore
be normalized so that the corresponding measure on H/(HnK) satisfies

G' of G.

Ru(y) i / u(gg'-x0)dg'
Jg'

yQ G' - x0 c H • x0 cyQ

u(x) dmyo (x) u(h • x0) d(h(H n K))
y0 JH/(hdk)

The proof is similar for /G,, whence the lemma.
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Going back to general double fibrations, the Radon dual transform of a

(continuous, say) function v on Y G/H is the function on X G/K
defined by

R*v(gK) — [ v(gkH) dk,
JK

for g G G, an integral of v over all y incident to x — gK. The word "dual"
is of course motivated by the classical projective duality between points
and hyperplanes in the basic example, but it also stems from the following
proposition.

PROPOSITION 2. Let X G/K with K compact, and assume that
Y G/H has a G-invariant measure. Let u G Cc(X), v G C(Y). Then

Ru G Cc(Y), R*v G C(X) and

/ u(x)R*v(x) dx — / Ru(y)v(y)dy= / u(x)v(y)dz,
Jx Jy JZ

where dx,dy,dz are the respective G-invariant measures on X,Y and
Z G/(K nH).

In the latter integral u(x)v(y) is considered as a function of z (x,y) on Z
(Section 2.1). We omit the proof, a classical exercise on invariant integrals
(cf. [9], p. 144 and [11], p. 41); all groups are assumed unimodular there, but
the proof only uses the invariant measures on the homogeneous spaces, thus

extends to the present situation.

Proposition 2 allows a natural extension of the transforms R and R* to
distributions. Given u G 8'{X), the distribution Ru G S'{Y) is defined by

(Ru, v) (u,R*v),

for all test functions v G C°°(Y). Similarly, given v G T>'(Y), the-distribution
R*v G V'ÇX) is defined by

(R*v, u) (v,Ru),

for all u G V(X). Again we refer to Helgason ([11], p. 42) for details, based

on the compactness of K. These definitions do extend the Radon integrals
for functions, as Proposition 2 shows, when identifying a function u with the

distribution u(x)dx, and similarly for v.
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