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206 FE. ROUVIERE
1. INTRODUCTION

The Radon transform on a manifold X associates to a function u on
this manifold its integrals Ru(y) over a given family Y of submanifolds y
(equipped with suitable measures). One of the main problems of integral
geometry is to recover u from Ru by means of an explicit inversion formula.
The dual Radon transform R* then enters the picture in a natural way: it
maps functions on Y into functions on X, by integrating (with respect to a
suitable measure) over all submanifolds y € Y which contain a given point
xeX.

Here we assume that a Lie group G acts transitively on both X and Y, so
that they are homogeneous spaces X = G/K, Y = G/H where K, H are Lie
subgroups of G ; besides, K will be compact throughout the paper. Our main
examples for X will be Riemannian symmetric spaces of the noncompact
type, often assumed to have rank one (hyperbolic spaces). For Y they will be
a family of totally geodesic submanifolds of X, or the family of horocycles.

We first look for a left inverse of R of the following form

(%) u(x) = DR*Ru(x)

where D is some operator acting on functions on X. In all known examples
D is an integro-differential operator, sometimes even differential. The purpose
of the present paper is to emphasize three simple ideas leading to such results
(or related to them), sometimes hidden under long calculations dealing with
some specific example. As a benefit we can unify several proofs from the
literature, and obtain some generalizations.

a. The first idea stems from Proposition 3 (Section 3.1): R*R is always a
convolution operator on X, by a K-invariant measure §. Besides, S can
easily be written down explicitly on rank one examples (Propositions 4
and 5). The problem is thus to find a convolution inverse D to §. We
study it in Section 4 for noncompact isotropic spaces (i.e. all Euclidean or
hyperbolic spaces), looking for D as a polynomial of the Laplace-Beltrami
operator of X with given fundamental solution S. This can be done for the
Radon transform on even-dimensional totally geodesic submanifolds (with an
additional assumption, see Theorem 8), or on horocycles of odd-dimensional
hyperbolic spaces (Theorem 9).

Another natural approach is to seek the convolution inverse D by means
of K-invariant harmonic analysis on X. We discuss this in Section 5 for the
totally geodesic Radon transform on hyperbolic spaces. Unfortunately it seems
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difficult to find D explicitly by this method, except under the asssumptions of
Theorem 8 (proved by simpler tools) or for the case of X = H"(R) (already
solved by Berenstein and Tarabusi [1]).

b. The second idea goes back to Johann Radon himself, and will be
developed here in full generality. If we replace R* by the shifted dual transform
R}, obtained by integrating over all submanifolds y at distance 7 (in some
sense) from a point x, we can prove new inversion formulas for R. More

precisely for X = G/K, Y = G/H we consider (Section 6.1)

Ru(gH) = / u(ghK)dh, Rfv(gK) = / v(gktH) dk |
H K

where g, t are elements of G, u is a function on X and v on Y. Of
course R = R* when ¢ is the identity. It is then quite elementary to observe
(Section 6.2) that an inversion formula of R at the origin x, for K -invariant
u, say u(x,) = (T, Ru(y)), implies the following new result

(k%) u(x) = (T, Ry Ru(x)) ,

for arbitrary u and x. The notation 7(;) means that the operator 7 now
acts on the shift variable ¢, instead of x as in (x). Applying this method to
the horocycle transform on Riemannian symmetric spaces of the noncompact
type, we obtain a new proof of Helgason’s inversion formulas (Theorem 13
and Corollary 20). In Theorem 14 the same method is applied to the totally
geodesic transform, thus extending to all classical hyperbolic spaces known
results for the real ones.

c. It is now an intriguing question to compare the results () and (*%)
of methods a and b. For the 2-dimensional totally geodesic tranform on
X = H*(R), Helgason ([10]) obtained a curious “amusing formula” by equating
the right-hand sides of () and (xx*). In Sections 6.4 and 6.5 we give direct
proofs of such formulas, for the Laplace operator first (Proposition 16), then
for general invariant differential operators (Theorem 17).

The content of these results is easily understood on the example of the
Radon transform on all hyperplanes of X = R%**! (see Section 6.4 for more
details). Here the inversion formulas (x), resp. (¥x), are

Cu(x) = LiR"Ru(x) , tesp. Cu(x) = ORI Ru(x)| _ ,

where C is a constant factor and L is the Euclidean Laplacian. Passing from
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one to the other is thus an immediate consequence of the wave equation
LR v(x) = 5‘t2R;‘ v(x)

for v = Ru and all x and 7. In Proposition 16 and Theorem 17 we construct
solutions of some generalized wave equations, some of them only valid when
t is the identity (but this suffices for our purpose). Such results may have
independent interest, providing explicit solutions of certain multitemporal wave
equations by means of shifted dual Radon transforms, which appear as integrals
of elementary “plane” waves (Proposition 19, for horocycles).

One last remark : explicit inversion formulas for the totally geodesic Radon
transform seem rather difficult to obtain, and most of those in the literature
are only given for spaces of constant curvature. We obtain here some results
for X = H"(F), with F=R, C or H, provided that the tangent spaces to the
geodesic submanifolds under consideration are F-vector spaces (Section 4.3 c,

Theorem 14, Proposition 16). This seems to be the simplest case after R”
and H"(R).
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all my debt to him. I am also deeply grateful to Mogens Flensted-Jensen,
Henrik Schlichtkrull and Fulvio Ricci for allowing me to present part of these
results in Copenhagen and Torino respectively.

I am indebted to the referee for remarks leading to several improvements
in Section 6.3.

NOTATIONS

a. GENERAL NOTATIONS. As usual R, C, H respectively denote the fields
of real numbers, complex numbers and quaternions. When considering vector
spaces on H, the scalars will act on the right. ,

If X is a (real C°°) manifold, C(X) is the space of complex-valued
continuous functions on X, C.(X) the subspace of compactly supported
functions and D(X) the subspace of compactly supported C*° functions:
D'(X) is the space of distributions and &’(X) the subspace of compactly
supported distributions.

If T is an operator (e.g. differential) on a space of functions on X , a
notation like 7, f(x,y) means that T acts on the variable x, not y.

If G is a (real) Lie group, let e, g, exp, Ad, ad respectively denote its
origin, Lie algebra, exponential mapping, adjoint representations of G and g.
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When G acts on X, we shall write g-x, or sometimes 7(g)x or even 7x(g)x,
for the point obtained when g € G acts on the point x € X. In particular, for
V € g, it is convenient to write g -V for Ad(g)V. In this context, D(X) is
the algebra of linear differential operators on X which commute to the action
of G, and D(G) refers to the special case when G acts onto itself by left
translations.

If X is a Riemannian manifold, X(x, r) will denote the sphere with center
x € X and radius r > 0. Also w, = 27"/?/T(n/2) is the area of the unit
sphere in the Euclidean space R”.

b. RIEMANNIAN HOMOGENEOUS SPACES. Let G be a Lie group, K a
compact subgroup and g, € their Lie algebras. The homogeneous manifold
X = G/K can be provided with a G-invariant Riemannian structure. Indeed a
scalar product can be taken on g, invariant under the compact group Ad ¢(K) ;
then g = €®p where p, the orthogonal complement of £ in g, is a K-invariant
(i.e. stable under Ad g(K)) vector subspace which can be identified with the
tangent space to X at the origin x, = K. Carrying by the action of G the
K -invariant scalar product on p we thus obtain a Riemannian structure on X,
and elements of G are isometries.

We shall also consider Y = G/H, where H is another Lie subgroup of G.

¢. RIEMANNIAN SYMMETRIC SPACES (see [8], Chap.IV or [15], Chap. XI
for their basic properties). A special case of the previous one, they are the
homogeneous spaces X = G/K, where G is a connected Lie group provided
with an involutive automorphism 6 and K is a compact subgroup which lies
between the group of all fixed points of 6 in G and its identity component.
The differential of 6 at e induces a Lie algebra automorphism of g and the
eigenspace decomposition g = £ @ p (same notations as before).

The exponential mapping of the symmetric space is Exp : p — X, related
to exp: g — G by Exp V= (expV)K for V € p. The curve Exp RV is the
geodesic of X which is tangent to the vector V at the origin x, = K.

d. RIEMANNIAN SYMMETRIC SPACES OF THE NONCOMPACT TYPE. Assum-
ing further that G is a connected non compact real semisimple Lie group with
finite center and K a maximal compact subgroup, we obtain the subclass of
Riemannian symmetric spaces of the noncompact type, particularly interesting
because of their rich (and well-known) structure arising from the theory of
root systems. The map Exp : p — X is then a global diffeomorphism onto.
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We briefly recall some classical semisimple notations, as used for instance
in Helgason’s books. Let a be a maximal abelian subspace of p. Related
to the restricted root system of the pair (g,a) are the eigenspaces g, the
Iwasawa decomposition g = t@adn of the Lie algebra and G = KAN for the
group (unique decomposition of each element of G into a product of factors
in the respective subgroups); the subgroups A, resp. N, of G are abelian,
resp. nilpotent. The half sum of positive roots (counted with multiplicities) is
a linear form p on a; we write a” = e?1%¢9 for a € A. Let M, resp. M,
denote the centralizer, resp. normalizer, of A in K. Then W = M’ /M is a
finite group called the Weyl group.

Let y, denote the orbit N -x, C X. The horocycles of X are the
submanifolds g - y,, for g € G. Since g -y, = Yo (globally) if and only if
g € MN, the space of all horocycles is ¥ = G/MN.

e. ISOTROPIC RIEMANNIAN SYMMETRIC SPACES. A Riemannian manifold
X is called isotropic if, for every x € X and every pair of unit tangent vectors
V, W to X at x, there exists an isometry of X leaving x fixed and mapping
V to W. The connected isotropic Riemannian manifolds are the Euclidean
spaces R", the hyperbolic spaces i.e. the Riemannian symmetric spaces of the
noncompact type and of rank one (dima = 1), and their compact analogues,
spheres and projective spaces. The compact spaces will not be considered in
this paper, so that most of our examples will be taken from the list

R", H'(R), H"(C), H"(H), H'°(0).

Among them we shall often restrict ourselves to the classical hyperbolic spaces
H"(F), with F=R, C or H.

2. GEOMETRIC SETTING

2.1 DOUBLE FIBRATIONS OF HOMOGENEOUS SPACES

The general group-theoretic setting for Radon transforms, introduced by
Helgason in the sixties, is motivated by the well-known example of points
and hyperplanes in the Euclidean space R". The set of points and the set
of hyperplanes are both homogeneous spaces of the isometry group of R”,
- and it turns out that the fundamental “incidence” relation (a point x belongs
to a hyperplane y), as well as the defining integral of the Radon transform,
have simple expressions in terms of Lie groups and invariant measures. This
observation suggests considering the following general situation.
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