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3. Main Theorem

All theorems from Section 2 are consequences of one theorem on the least

number of flattenings of a closed polygon in real projective space.

In his remarkable work [3], M. Barner introduced the notion of a strictly
convex curve in real projective space : this is a smooth closed curve 7 C RP^

such that for every (d — 1)-tuple of points on 7 there exists a hyperplane

through these points that does not intersect 7 at any other points. Barner

discovered the following theorem:

A strictly convex curve has at least d-\- 1 distinct flattening points.

Recall that a flattening point of a projective space curve is a point at which
the osculating hyperplane is stationary; in other words, this is a singularity
of the projectively dual curve. In fact, Barner's result is considerably stronger
but we shall not dwell on it here - see [15] for an exposition.

Our goal in this section is to provide a discrete version of Barner's theorem.

First we need to develop an elementary intersection formalism for polygonal
lines.

3.1 Intersection multiplicities

Throughout this section we shall look at closed polygons P C RP^ with
vertices Vj,..., Vn (n > d+ 1 in general position. In other words, for every
set of vertices Vh,..., Vik, where k < d + 1, the span of Vh,..., Vik is
(k — 1)-dimensional.

Definition 3.1. A polygon P is said to be transverse to a hyperplane
H at a point X G P n H if

(a) X is an interior point of an edge and this edge is transverse to H, or
(b) A is a vertex, the two edges incident to X are transverse to H and

are locally separated by H.

Clearly, transversality is an open condition.

Definition 3.2. A polygon P is said to intersect a hyperplane H with
multiplicity k if for every hyperplane H' sufficiently close to H and transverse
to P, the number of points P fl H' does not exceed k and, moreover, k is
attained for some Hf.
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This definition does not exclude the case where a number of vertices of
P lie in H.

LEMMA 3.3. Let L-,,..., V[k with k < d be vertices of P. Then any
hyperplane H passing through *,,, Vik meets P with multiplicity at least k.

Proof Move each VLj (j lr... ,k) slightly along the edge (Vijt V^+i)
to obtain a new point V[.. Let us show that a generic hyperplane H' through
^i> • * • > transverse to P. This will imply the lemma because H' has at
least k intersections with P.

It suffices to show that H' does not contain any vertex of P. First we
note that, since P is in general position, a generic hyperplane H through
Vh,..., Vik does not contain any other vertex. The same holds true for every
hyperplane which is sufficiently close to H. It remains to show that the chosen
H' does not contain any of Vh,..., Vik.

Suppose H' contains Vtj. Then H' contains the edge (V^5V^+1) and
therefore also Vi.+i. If ij + 1 ^ {d, ik} we obtain a contradiction with the
previous paragraph. If, on the other hand, z) + 1 G {z'i,...,4} then we can
proceed in the same way with Vij+i. However, we cannot go on indefinitely
since k < n.

The next definition is topological in nature.

Definition 3.4. Consider a continuous curve in RJW with endpoints A
and Z. Let H be a hyperplane not containing A or Z. We say that A and Z
are on one side of H if one can connect A and Z by a curve not intersecting
H in such a way that the resulting closed curve is contractible. Otherwise we
say that A and Z are separated by H.

Clearly, if one has only two points A and Z (and no curve connecting

H

H'

multiplicity 2

Figure 3
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them), then one cannot say that the points are on one side of, or separated

by, a hyperplane.

Lemma 3.5. Let T (A,..., Z) be a broken line in general position in

RPd, and let H be a hyperplane not containing A or Z. Denote by k the

intersection multiplicity of T with H. Then A and Z are separated by H if
k is odd and not separated otherwise.

Proof Connect Z and A by a segment so as to obtain a closed polygon
T and consider a hyperplane H' close to H, transverse to F and intersecting
T in k points. Since T is contractible, H' intersects T in an even number of
points. Therefore, H' intersects the segment (Z,A) for odd k and does not
intersect it for even k.

The next definition introduces a significant class of polygons which is our
main object of study.

I Definition 3.6. A polygon P is called strictly convex if through every
i d — 1 vertices there passes a hyperplane H whose intersection multiplicity
i with P is equal to d — 1.

I This definition becomes, in the smooth limit, that of strict convexity for
smooth curves, due to Barner.

Definition 3.7. A d-tuple of consecutive vertices (V/,..., V/+^_1) of a

polygon P in RP^ is called a flattening if the endpoints V^i and Vi+d of
; the broken line (V/_ i,..., are :

I (a) separated by the hyperplane through (Vf,..., Vi+d-i) if d is even,
I (b) not separated if d is odd.

a) d 2 b) d 3

Figure 4
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Remark 3.8. A curve in RPd can be lifted to R^+1 \ {0} ; the lifting is
not unique. Given a polygon P c RPd with vertices V\,... T Vn, we lift it to
Rj+i as a polygon P and denote its vertices by V\,... Vn. Then a d-tuple
(V;,.... Vi+d-i) is a flattening if and only if the determinant

(3.1) Aj\Vj Vj+a\

changes sign as j varies from i — 1 to i.

This property is independent of the lifting.

3.2 A SIMPLEX IS STRICTLY CONVEX

Define a simplex Sd C RPd with vertices Vj,..., Vd+i as the projection
from the punctured R^+1 of the polygonal line:

(3.2) Vi (1,0,...,0), v2 (0,1,0,...,0), (o,...,o,i)
and

(3.3) Vd+2=(-l)d+lVl.
The last vertex has the same projection as the first one; Sj is contractible for
odd d, and non-contractible for even d.

Figure 5

PROPOSITION 3.9. The polygon Sd is strictly convex.

Proof. We need to prove that through every (d — 1)-tuple

(Vu...,Vh...,Vj,...,VM)
there passes a hyperplane H intersecting P with multiplicity d — 1. Select a

point W on the line (V), Vf) in such a manner that W lies on the segment
(Vi, Vf) if j — i is even, and does not lie on it if j — i is odd. Define H as the

linear span of V\,..., V),..., V),..., Vd+u W• We claim that its projection
H C RP^ meets Sd with multiplicity < d — 1.
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