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PROJECTIVE GEOMETRY OF POLYGONS 7

REMARK 2.8. On interchanging sides and vertices, and replacing circum-
scribed conics by inscribed ones, we arrive at a “dual” theorem. The latter is
equivalent to Theorem 2.6 via projective duality — cf. Remark 2.4.

2.3  DISCRETE GHYS THEOREM

A discrete object of study in this section is a pair of cyclically ordered
n-tuples X = (x1,...,%,) and ¥ = (y1,...,y,) In RP! with n > 4. We
choose an orientation of RP! and assume that the cyclic ordering of each of
the two n-tuples is induced by this orientation.

Recall that an ordered quadruple of distinct points in RP! determines a
number, the cross-ratio, which is a projective invariant. Choosing an affine
parameter such that the points are given by real numbers a < b < ¢ < d, the
cross-ratio 1is

(c—a)d—b)

2.1) [a,b,c,d] = )

DEFINITION 2.9. A triple of consecutive indices (i,i+ 1,i-+2) 1s said to
be extremal if the difference of cross-ratios

(2.2) [V, Yit1, Yit2, Vi+3) — [X5, Xj1, Xjr2, Xj43]

changes sign as j varies from i —1 to i (this does not exclude the case where
either of the differences vanishes).

THEOREM 2.10. For every pair X,Y of n-tuples of points as above, there
exist at least four extremal triples.

EXAMPLE 2.11. If n = 4 then the theorem holds for a very simple reason.
A cyclic permutation of four points induces the following transformation of
their cross-ratio:

[x17x27-x37x4]
[X],XZ,X3,X4] =1 ’

(23) [x47-x17x27x3] -

and this is an involution. Furthermore, if a > b > 1 then a/(a—1) < b/(b—1).
Therefore, each triple of indices is extremal.

Let us interpret Theorem 2.10 in geometrical terms like Theorems 2.2 and
2.6. There exists a unique projective transformation that carries x;, x4, X;4o
into yj, yit+1,Yit2, respectively. The graph G of this transformation can be seen
as a curve in RP' x RP'; the three points (x;,y:), (tit1,Vie1), (Kisa, yica) lie
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on this graph. An ordered pair of points (x;,x;;;) in oriented RP' defines a
unique segment. An ordered pair of points ((xj, Vi) (Xjg1, yj+1)) in RP! x RP!
also defines a unique segment, namely the one whose projection on each
factor is a segment in RP' as defined before. The triple (i,i 4+ 1,i+ 2) is
extremal if and only if the topological intersection index of the broken line
(Xi—1,Yi=1), - - -, (Xiy3, yiy3) with the graph G is zero. This fact can be checked
from (2.1) by a direct computation, which we omit.
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FIGURE 2

Let us also comment on the relation between Definition 2.9 and the zeroes |

of the Schwarzian derivative of a diffeomorphism of the projective line. Let
JC()IO, X1 =¢&, XQ:2€, X3 = 3¢

be four infinitely close points given in some affine coordinate, and let y; = f(x;)
where f is a diffeomorphism of RP!. Then a direct computation using (2.1)
yields:

Yo, Y1, Y2, 3] — [x0, %1, %2, x3] = € S(£)(0) + 0(53‘),

O3
s ="5 3 (7)

is the Schwarzian derivative of f. Thus, for ¢ — 0, Definition 2.9 corresponds
to the vanishing of the Schwarzian derivative.

where
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