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6 : V. OVSIENKO AND S. TABACHNIKOV

THEOREM 2.2. Every plane convex polygon P has at least 4 extremal
triples of vertices.

EXAMPLE 2.3. If P is a quadrilateral then the theorem holds tautologically
since the (i — 1) vertex coincides with the (i + 3)™ for every i.

REMARK 2.4. An alternative approach to discretization of the 4-vertex
theorem consists in inscribing circles in consecutive triples of sides of a
polygon (the centre of such a circle is the intersection point of the bisectors
of consecutive angles of the polygon). Then a triple of sides (¢;, 411, %;12) is
said to be extremal if the lines ¢;_1, ¢;, 5 either both intersect the corresponding
circle or both fail to intersect it. With this definition an analogue of Theorem 2.2
holds true [19, 16], and this, in the limit, also provides the smooth 4-vertex
theorem.

Both formulations, concerning circumscribed or inscribed circles, make
sense on the sphere. Moreover, they are equivalent via projective duality.

2.2 DISCRETE THEOREM ON 6 AFFINE VERTICES

Five generic points in the plane determine a conic. Considering the plane
as an affine part of the projective plane, the complement of the conic has
two connected components. Let P be a plane convex n-gon; throughout this
section we assume that n > 6. As in the previous section, we introduce the
following definition.

DEFINITION 2.5. Five consecutive vertices V;,..., Vi, 4 are said to be
extremal if V;_; and Vs lie on the same side of the conic through these
5 points (this does not exclude the case where V;_; or V. s belongs to the
conic).

If P is replaced by a smooth convex curve, and V;,..., Vi, 4 are infinitely
close points, we recover the definition of an affine vertex. Hence the following
theorem is a discrete version of the smooth theorem on 6 affine vertices.

THEOREM 2.6. Every plane convex polygon P has at least 6 extremal
quintuples of vertices.

EXAMPLE 2.7. 1If P is a hexagon then the theorem holds tautologically
for the same reason as in Example 2.3.
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PROJECTIVE GEOMETRY OF POLYGONS 7

REMARK 2.8. On interchanging sides and vertices, and replacing circum-
scribed conics by inscribed ones, we arrive at a “dual” theorem. The latter is
equivalent to Theorem 2.6 via projective duality — cf. Remark 2.4.

2.3  DISCRETE GHYS THEOREM

A discrete object of study in this section is a pair of cyclically ordered
n-tuples X = (x1,...,%,) and ¥ = (y1,...,y,) In RP! with n > 4. We
choose an orientation of RP! and assume that the cyclic ordering of each of
the two n-tuples is induced by this orientation.

Recall that an ordered quadruple of distinct points in RP! determines a
number, the cross-ratio, which is a projective invariant. Choosing an affine
parameter such that the points are given by real numbers a < b < ¢ < d, the
cross-ratio 1is

(c—a)d—b)

2.1) [a,b,c,d] = )

DEFINITION 2.9. A triple of consecutive indices (i,i+ 1,i-+2) 1s said to
be extremal if the difference of cross-ratios

(2.2) [V, Yit1, Yit2, Vi+3) — [X5, Xj1, Xjr2, Xj43]

changes sign as j varies from i —1 to i (this does not exclude the case where
either of the differences vanishes).

THEOREM 2.10. For every pair X,Y of n-tuples of points as above, there
exist at least four extremal triples.

EXAMPLE 2.11. If n = 4 then the theorem holds for a very simple reason.
A cyclic permutation of four points induces the following transformation of
their cross-ratio:

[x17x27-x37x4]
[X],XZ,X3,X4] =1 ’

(23) [x47-x17x27x3] -

and this is an involution. Furthermore, if a > b > 1 then a/(a—1) < b/(b—1).
Therefore, each triple of indices is extremal.

Let us interpret Theorem 2.10 in geometrical terms like Theorems 2.2 and
2.6. There exists a unique projective transformation that carries x;, x4, X;4o
into yj, yit+1,Yit2, respectively. The graph G of this transformation can be seen
as a curve in RP' x RP'; the three points (x;,y:), (tit1,Vie1), (Kisa, yica) lie
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