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HARTREE’S THEOREM
ON EXISTENCE OF THE QUANTUM DEFECT

by Paul KOOSIS

INTRODUCTION

In terms of atomic (Hartree) units, the Schrodinger equation for hydrogen
reads thus:

. 2
2 <A ~0.
o) V0 + (g = 3)$0
Here, X denotes the point (x,y,2), |X| = /X2 +y% + 7%, and
82 32 52
Y + =+

X752 Tyt 022

is the Laplacian. The potential energy due to attraction between the electron
and the nucleus is represented by —1/|X| and the total energy by —A/2.
Only certain proper values of A are allowed, for we require that (1) have a

non-zero solution ¥(X) in Lp(R?) with grad+¥(X) also in Lp(R%), and it is
well known that this can only happen for

1
2 A=— withn=1,2,3,....

n?

This result is deduced in most of the older books on elementary quantum
mechanics; see for instance [1], pp.80-86 or [2], pp.347-352. The values
of A given by (2) correspond to the energy levels of the bound states of
hydrogen; their differences figure as the frequencies of spectrum lines (in the
spectrum of atomic hydrogen), and they are indeed very close to the actual
observed frequencies.

In order to explain the spectra of alkali metals like sodium, Bohr and
Sommerfeld proposed, 80 years ago, a model like the one for hydrogen, based

partly on notions coming from chemistry. In that model one outer electron
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moves around, and partly through, a small spherically symmetric charge cloud
of finite extent, composed of the atom’s other electrons and surrounding the
nucleus. That charge cloud is supposed to shield, to a large extent, the outer
electron from the attraction of the nucleus when these two are far apart, but to
provide less shielding when the outer electron penetrates the cloud; the latter
is otherwise taken as static. Such a picture can obviously represent only a first
approximation; it has nevertheless been used since about 1920 in attempts to
obtain, for the bound states of the alkali metals, a theoretical description of the
energy levels that would agree with the results of spectroscopic measurement.
For any charge cloud model the potential energy must have the form

1 g(x)
X~ 20|

with some positive function ¢(|X|) of compact support depending only on
the radius, and which we may just as well take as continuous. In these
circumstances the Schrodinger equation becomes

2 | (xD

© VR0 + (5 + g~ Mpeo =,

and one is interested in the proper values A corresponding to non-zero solutions
¥ with ¥(X) and grad¥(X) in L,(R?).

If the model is to embody a reasonable approximation to physical reality,
these proper values must correspond to the empirical formulas for spectral
terms of the alkali metals, published by Rydberg in 1890. To agree with his
results, the proper values of (3) would have to be given by an approximate
formula resembling (2), viz.,

b
(n—6&)*

1%

4) A

Here n takes (certain) positive integral values and [, for the moment, is
just an ad hoc index to which we may, if we like, assign the values 0,1,2,....
The quantities §; are constant and the different proper values can be grouped
into series according to the value of [. (In place of that index, spectroscopists
have always used the subscripts s,p,d,f,g,... ; for most of their work only
the first 4 or 5 values of | are needed.)

The formula (4) does not correspond exactly to spectral data. For that we
would need

1

N o
) TR
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with slowly varying functions &;(n). What Rydberg’s results suggest is that
6;(n) becomes, for each [, more and more nearly constant as n increases and
apparently tends to a limit §; as n — oo. For about the past 75 years, 0; has
been called a quantum defect.

Since the time of Bohr and Sommerfeld, physicists have maintained that
quantum theory should yield (4) when the charge cloud model is assumed. In
their attempts to show this they first worked with the older quantum theory
(based on phase integrals), and later on with (3). There the idea is to deduce
(5) for the proper values A of (3), with functions 6;(n) having finite limits
for n — o0.

Most books on atomic structure and quantum mechanics, especially the
older ones, include some discussion of this matter, usually heuristic or based
on certain approximations. I cannot recall any of these books ever mentioning
that in 1928, two years (!) after Schrodinger’s equation first became known,
Hartree ([3]) published a proof of the result in question. As long as ¢(|X|) is
of compact support and continuous, the proper values of (3) are given by (5),
and for each of the functions ¢;(n) appearing there, nl_&rglo 0;(n) does exist.

It was only by chance that I found out about [3]. I came across a reference
to it in a long article by Seaton ([4]) which I had in turn learned about from
[5], a book by Gallagher that I had just happened to notice on a shelf in
our library at McGill. Seaton describes what Hartree did in the introduction
to his paper, and I was able from that (with considerable help from pp. 87—
90 of [6]) to reconstruct what I thought was Hartree’s original argument.
Afterwards, I looked up [3] and saw that my own procedure, based on the
direct examination of certain contour integrals, was more transparent than the
one followed there.

Hartree’s proof is based on his identification of two special solutions,
having particular behaviour as A — 0, of the “radial” Schrodinger equation for
hydrogen (see §2 below), and especially on a remarkable relation, discovered
by him, involving those two solutions. The first of them is now familiar and
described in most books on elementary quantum mechanics, but the. second
is still recondite except for specialists in atomic collision theory. Discussion
of the two solutions in [3] consists essentially of a detailed scrutiny of
their respective series developments. The formulas for these series, especially
for the second one, are very cumbersome, and it is hard for any reader to
grasp from Hartree’s laborious computations why the above mentioned relation
should hold. Although both solutions now figure routinely (along with their
numerous variants) in books on collision theory, it remains as difficult as it
was in Hartree’s time to deduce his relation from the series for them.
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In the present article the solutions in question are represented in terms
of contour integrals and their properties obtained from that representa-
tion. Hartree’s relation involving the two solutions follows quite easily
in this approach, by simple comparison of two branches of the function
((z — K)/(z + K))/*. A small gap in the original version of the proof is reme-
died here by the inclusion of Theorem 4 at the end of §8. Formulas like the
one of Ritz, expressing the dependence on n of the 6;(n) appearing in (5),
are deduced in §12 from the contour integrals.

I am grateful to my friend V.P. Havin for several conversations about this
material. His persistent questions about the sketch of Hartree’s plan given in
§2 led me, when I was already lecturing on this subject, to realize that the
plan itself was incomplete and to work out what was needed to set it right.

I think finally that this article may be useful for non-specialists who wish
to understand the mathematics underlying the first principles of quantum defect
theory. There has been a renewal of interest in that subject, due partly to the
generalization of laser technology in experimental work. For references the
reader may consult [4], [5], [9] and [10]; [8] is a somewhat older work on
general collision theory. The referee has called my attention to the more recent
paper of M. A. Shubov [13]. I am beholden to A. Dalgarno for a photocopy
of [10], an interesting historical survey of the subject.

1. The index [ affixed to the functions ¢;(n) appearing in (5) has,
of course, a physical meaning; it represents the outer electron’s angular
momentum for the bound state under consideration. Let us, for the remainder
of this paper, fix a definite spherical harmonic Q;(Q) of degree 1 > 0, where
Q denotes a point ranging over the unit sphere in R?>. We then restrict our
attention to the possible solutions ¥ (X) of (3) associated with this particular
0 ; if we write X = rQ with r = |X], they take the form

b9 = "o,

where, as is well known (see [1], pp.70-74 or [2], pp.347-352), u(r) must
satisfy the ordinary differential equation

d*u(r) 2 o) W+1)
dr? +<7+ ) —A

This is frequently referred to as the “radial” Schrodinger equation and u(r)
as the radial part of 1(X) ; for bound states our conditions on 1 require that
u(r) and u/(r) — (u(r)/r) be in L,(0,00).

(6) )u(r) = 0.
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THEOREM 1. Equation (6) has a solution u(r,\) in [0,00) with
(7) u(r, \) = r'tt + o2
for r near 0, and this solution is an entire ]iunction of the parameter A.

Proof. We first fix some L > 0 and show that (6) has a solution u(r, \)
satisfying (7) and analytic in A for |A| < L. It is enough to obtain such a
solution in any inferval [0,a] with a > 0, for then the former can be uniquely
continued to [a, 00) by the usual existence theorem for differential equations,
and its analyticity in A for |A| < L will persist for r > a by a complement
to that theorem (see, e.g., [6], pp. 67 or [11], pp. 62-73).

The procedure is a little different according as [ > 1 or [ = 0, and we
first consider the former case. Start then by putting uo(r, \) = r'*! and taking

T+ 2490
®  wae = [ (22w v dias

for n=0,1,2,....
From (8) we first get u;(r, \) = r'*!1 + O(r'*?) and then, writing u,(r) for
u,(r, \) to save space, the relation

9) upyo(r) —up41(r) = / / (I(H; D_2+90 -+ )\) (U 1(8) —un(t)) dt ds .
o Jo t t

It follows from this by mathematical induction that u,(r) = r't! + O(?)
for all n, making

tng1(r) — un(r) = O(r'?)
for n=0,1,2,.... Supposing, then, that @ > 0 and that
(10) ]un—i—l(r)—un(r)l SMn rl+2

for 0 <r <a, we find from (9) that

I Ca - La?
n . M I+2
[t 2(r) = 1 ()] < {l+2 Tirnary (l+3)(l+4>}r

when 0 <r <a and |\ < L, where C = max{|2+ ¢()|; 0 <t < a}. We
can thus fix a > 0, depending only on L, so as to make (10) imply

|tng2(r) — thn 1 ()| < My i rH?

for 0<r<a and |A| <L, with

[
Mn+1 = mMn .
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The sum

oo

D (g1 (r, X) = un(r, V)

n=0
will therefore converge uniformly (like a geometric series) for 0 < r < a and
IA] < L; by (9) it must thus represent a function analytic in A for such r
and A. Referring now to (8) and making n — oo therein, we see that the
function

u(r, A) = ug(r, \) + Y _(ttng1(r, A) — un(r, V),
n=0

defined for 0 < r <a and || < L, is a solution of (6) with the stipulated
analyticity, satisfying (7).
When [ =0 we start by taking ug(r, A\) = r and then putting

(11) un+1(r,)\):r—/r/3(2+¢(t) —)\)un(t,)\)dtds
0 0

¢

for n=0,1,2,.... It is readily checked by induction that u,;(r, \) —u,(r, \)
is O(r**?) for each n, and then the estimation of |u, 2(r, \) — tpy1(r, \)|
in terms of a bound for |u,+1 — u,| can be carried out as above. The series

Z(un+1(r, A) — u,(r, A)) will actually converge quite rapidly and the desired

n=0
result follows as before on letting n» — oo in (11).

From (6) and the proof just completed it is manifest that, on any bounded
interval of [0,c0), u(r,A) and its first two derivatives with respect to r
depend, analytically and in a uniform manner, on the parameter A. We have,
in particular,

o @]
(12) w(r, \) = u(r,0)+ > _ u )\
m=1
with certain smooth functions u"(r). Here, u(r,0) is a solution of

d*u 2+¢(r) IA+1)y
dr2+< R )u—O

satisfying (7) at the origin.

(13)

r

Our concern here is ultimately with the values of A for which non-
zero solutions u(r) of (6) meeting the requirements mentioned just before
Theorem 1 are forthcoming. By those conditions u(r) and u/(r) — (u(r)/r) are,
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in particular, obliged to be square integrable on small intervals (0,a), a > 0,
and that is certainly true for the solutions u(r,\) furnished by the theorem.

But (6) has other solutions in (0,00). If u(r) is any one of those, a
standard recipe yields

d / u(r) \  const

E(mr, A)) T (u(r, V)2

at least for small r > 0 where the denominator on the right does not vanish
by (7) — see [11], p. 122. From this we get

u(r) = Au(r,\) + B(r—" + o(r™)

near 0, with certain constants A and B. If [ > 0, the right side is not in L,(0, a)
unless B = 0, and even when [ = 0, substitution into (6) and subsequent
integration show that u/(r) = Au/(r,A\)+ O(logr). This is in L,(0, a), but now
u(r)/r is not, unless B is again 0. It follows that the only solutions of (6) of
interest to us here are the constant multiples of u(r,\).

2. We wish, then, to see for which values of A the solution u(r, ) to
(6) furnished by Theorem 1 is in L,(0, 00). Since this solution is obviously
in L,(0,a) for any a > 0, our question amounts to asking when u(r, \) is in
Ly(a,o0) for some a > 0.

According to our assumptions on ¢(r), that function vanishes identically
for all r > some ry. For such r, u(r,\) must therefore coincide with a
solution w(r) of

(14)

dv(r) /2 Ul+1)
equal, of course, to the radial part of some solution (X) of (1) associated
with our fixed spherical harmonic Q;(Q).

Being interested in bound states, we care only about the possible values of
A corresponding to negative energy levels —\/2; we may therefore put

r r

(15) A= K2
with K > 0. This notation will be used from now on. We will also write
(16) K = —1—

v

whenever convenient; in the present article  is usually small and v large.

Hartree’s fundamental observation in [3] was that for A\ > 0 (sic!), there
are two linearly independent solutions v(r,\) and w,(r,)\) of (14), each
practically independent of X\ for small A > 0, and such that, when x > 0,
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(17) v (r, nz) cos v + vy(r, k%) sin Ty

decays exponentially as r — oo. Linear combinations of v; and v, not
proportional to (17) have on the other hand exponential growth in r when
k > 0. Let us sketch now the reasoning leading from this result to the formula
(4); a detailed argument will be given in § 10.

For )\ to be a proper value of (6) it is necessary and sufficient according to
the above remark that u(r, \) be in L,(rg, o) where, for r > rg, u(r,\) also
coincides with a linear combination of v;(r, k%) and v,(r, k*). But it follows
from Hartree’s observation that such a linear combination is in L,(rg, c0) if
and only if it is proportional to (17). Therefore A is a proper value of (6) if
and only if

u(r, A) = c (vi(r, k%) cos v + vy(r, &) sin )

with a constant ¢ for r > ry.
Now when v is very large and hence \ = x? close to 0, the last relation,
by (12) and Hartree’s observation, will be very close to

(18) u(r,0) = c(vi(r,0)cosmv + vy(r,0)sinwv), r>ry,
and we will similarly have (nearly)
(19) u'(r,0) = ¢ (vi(r,0) cos mv + vj(r,0) sinwv), r>rg.

The uniqueness theorem for differential equations ([11], pp.62-83) and
(7) imply that wu(ro,0) and u'(ry,0) cannot both vanish; the quantity
v1(ro, 0)v4(ro, 0) — v} (ro, 0)va(ro, 0) cannot vanish either due to linear inde-
pendence of v; and v,.

It follows that the relations obtained by putting r = rp in (18) and (19)
can usually be solved for cotnv or, if not, for tan7v. This will evidently
determine the fractional part A = v — [v] of v in a manner independent
of v itself. The corresponding proper values A = 1/v* must therefore have
the form 1/([v] + A)?, with A independent of [v], for large v, and this is
essentially (4).

Relations (18) and (19) are of course only approximations to the true ones
and so therefore is the value A for v — [v], independent of v, obtained
from them. However, when [v] — oo, that value should yield more and more
nearly the exact values of v = [v] 4+ (v — [v]) associated with the proper
values of (6).

In this way, Hartree arrived at Rydberg’s empirical result. We see that his
argument relies critically on the existence of the functions vy (r, k%), va(r, £2)
having precisely the properties described above; let us therefore proceed to
the construction of such functions.
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3. Equation (14) has a regular singular point at the origin and may thus
be treated using the method of Frobenius (for which see, e.g., [2], pp- 61-78
or [11], pp. 160-164). The corresponding indicial equation has the roots -l
and [+ 1, differing by an integer, which causes problems. Wishing to obtain
two independent solutions to (14), we put

(20) u(r) = rw(r)

therein (and not v(r) = r'tlw(r), as is done in elementary books on quantum
mechanics). Since A = x?, that gives us

d*w(r) dw(r)

r — 21
dr? dr

Direct substitution of a power series in r into (21) will only give us one
solution (see above), so we instead resort to Laplace transforms as Schrodinger
did in his first paper on the wave equation. This leads to a first order differential
equation for the Laplace transform of w. To find that equation, we may as
well assume w(r) to be given as an inverse Laplace transform, recalling that
such objects can frequently be expressed in the form

(21) + 2 — &*w(r) =0.

(22) w(r) = / e”g(2)dz
C

with some ‘“‘suitable” contour C and a function g(z), single valued on C and
analytic near each of its points (see [6], pp. 87-88).
When C is a closed curve, partial integration yields

/ re’*g(z) dz = —/ e™q'(z)dz
s c

d
/ re2g(2) dz = / (2o dz.
c c 4z

Use of these formulas and differentiation under the integral sign in (22) show
the right side of (21) to be equal to |

and

/ {02 = A)g' @) + 201 — 1+ D)@ e dz,
C
which vanishes identically provided that

(k* — 7% §d@+21 -1+ 1D2g =0.

For this we have a solution

1
23 _
;L?_ 9(2) (z — K)I—H—V(Z + ,g)l—I-H-u
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(with, as always, v = 1/k), corresponding, by (22), to the solution

z— K\1l/~ e’
(24) w(r) = /C (=5) o e

of (21), subject to the above conditions on the behaviour of g(z) near C.

Even with some curves C that are not closed, (24) will give solutions of
(21). For that it is of course necessary that the right side of (22) be (suitably)
convergent and admit differentiation under the integral sign, and that g(z)
be analytic at the points of C. It is also essential to have the above partial
integration formulas, but they will hold provided that eg(z) and z%e"*g(z)
both tend to zero when z moves along C towards either end of that curve.

4. Our procedure will be to look at the solutions w(r) of (21) obtained
by using different contours C in (24) and different branches of the (usually)
many-valued function ((z—x)/(z+ k)% . The idea of doing this comes from
pp- 87-88 of [6], and expressions like the integral in (24) are often referred
to as Whittaker functions.

For our first choice, we take the branch of ((z — k)/(z+ k)Y* which is
analytic and single-valued outside the slit [—k, k] and positive for z =x > K.
This branch is analytic even at oo, where it takes the value 1. For C we take
any circle of radius A > k about the origin, oriented in the counter-clockwise
sense, and then put

1 z— K\ /¥ e’
2 e ( ) &z,
25) i) =7 [ (55 o e
frequently writing wy(r) for wy(r, %),
A
C

FIGURE 1
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It will soon be apparent that w;(r) really does depend on x* (and in an
analytic manner) rather than just on . According to Cauchy’s theorem, the
integral in (25) is actually independent of the radius of C, as long as itis > &.

The discussion in §3 shows that w;(r) is a solution of (21), and it will
be very important for us later on that w;(r) is real. That is so because our
branch of ((z — k)/(z + )", being real for z = x > x, must take complex
conjugate values at complex conjugate points z by the Schwarz reflection
principle. The same is of course true for e™/(z*> — k?)!T! (here r is always
> 0), so the reality of w;(r, k%) becomes manifest on putting z = A¢'Y in
(25) and writing the integral appearing there as one with ¥ ranging from —m
to 7.

By expanding e™ in powers of rz we get, from (25),

(26) wi(r) =Y an™
=0
with

dz .

1 z— K\ /" 7"
(27) am = —= C(ZJH{) (2 — g2+

m!i
Here, we can make the radius of C tend to co, and we find in that way that
am =0 for m=0,1,...,2l, whereas a1 = 27/(2]+ 1)! Thus,

2T
I+ 1!

On referring to (20), we see that

(28) wi(r, KY) = P higher degree terms.

(29) vi(r, k%) = r~hwy (r, £2)

is a power-series solution of (14) (for A = k?), starting with a term in rit1,
Aside from a constant factor, it therefore coincides with the usual solution
of (14) obtained in elementary books on quantum mechanics (see, e.g., [1],
pp. 80-86 or [2], pp. 347-352).

We shall need an expression of w;(r,«?) as an integral over a contour
different from C (figure 1). Letting s’ > & and taking the radius A of C
strictly between k and k', Cauchy’s theorem yields

Z— K\ 1/~ e’ Z— K\ Ll/~K e’?
0 [ G) = | ()
e /c Z+K (22 — k21 ‘ /c/ Z+kK (% — g2)I+1 %5

where 2?3’2 is the contour shown in figure 2. The integrand on the right is
O(|z|7™7") on the semi-circular part of C’ when the radius B of the latter
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k' + iB

L Y

’ «
k' — B

FIGURE 2

is large, so the integral along that part tends to zero as B — oo (r is always |
> 0). From (25) we thus have

1 [FH® g\ e’
2y _ = .
D wilr, &%) i L (z + I€> (22 — KH)H1 az;

'—ioo

here k' > k can be taken as close as we like to K.

It remains to see how w;(r,x*) depends on ~ when k — 0. For this
purpose we fix the circle C used in (25) and note that, on that circle, we have
uniformly

10g(
Z+ kK
for small x > O and the branch of the left-hand logarithm which is zero

at oo. Thence,

(z—ﬁ)l/’“_ex 1( 2k 2K° 2K )
2+ K — P % z 383 57 7
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uniformly on C (for the branch of ((z — «)/(z + k))/* in use here). At the

same time,
1 1 (1 K2 ) —2-2
(72 — K2)I+] 72+2 72 .

Substitution of these formulas into (25) shows (by inspection!) that w(r, K2)
is an analytic function of k* when k is near 0, and varies uniformly with
k* when r > 0 is bounded. On differentiating both sides of (25) with respect
to r, we see that an analogous statement holds for wi(r, K?).

From the preceding formulas we see also that w;(r,k*) — wi(r,0)
uniformly for bounded r as k — 0, where

1 e—2/zerz
(32) wl(r’o):?/c—zﬁ;f—dz’

and that wi(r, k%) behaves in corresponding fashion. The function wi(r,0) is
simply a solution of (21) for k = 0, and for it the expansion (28) is still
valid. The reader may recognize that the integral in (32) can be expressed in
terms of a Bessel function.

Most of the last conclusions could also have been deduced from the results
in §1. On taking ¢(r) = 0 in (6) we obtain (14), and the solution u(r, )
of the former goes over to ((2I + 1)!/2m)vi(r, k%), with vy(r, k?) related to
wi(r, %) by (29).

5. We pass to the construction of a second solution, ws(r, &%), to (21)
— before defining wy(r,x*) ! — and for this we need a different branch of
(z—rK)/(z+ n))l/ *. The present one agrees with the branch used in the last
§ when Re z > &, but it is then extended by analytic continuation from that
half-plane into the whole simply-connected domain obtained by removing the
two rays (—oo,—k], [K,k+i00) from C (see figure 3).

Taking a contour C” of the form shown in figure 3 (cf. [6], p. 88) we put,
using this new branch,

1 Z— K\ 1/~ e’t
(33) wirt) =1 [ (57 ”

i z+ kK — g2)H1

for r > 0, and shall often denote ws(r, %) by w3 (r).

The integrand in (33) is 0(|z|_21—2) for Rez <0 and z — o0, so we
may use Cauchy’s theorem as in the last § to conclude that the integral does
not depend on the exact position of the horizontal portions of C”, nor on the
radius of that contour’s circular part (as long as it is < 2k); the horizontal
portions may even be taken to run along the upper and lower edges of the
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A

A

FIGURE 3

slit (—oo, —k]. Making the radius of the circular part of C” equal to a small
quantity € > 0, we see from (33) that ws(r, k*) decays at least as rapidly as
e~ ("=87 when r — oo ; € can, of course, be taken as close to 0 as we like.

The function ws(r, k?) is obviously continuous in r for r > 0. Moreover,
when r > 0, the contour C” and the function g¢(z) given by (23) fulfill the
conditions noted at the end of §3; ws(r, k%) therefore satisfies (21) for r > 0.

Another integral representation of ws(r) will be essential in our work. Fix

k", —k < k" < Kk, and take the contour I'” shown in figure 4. By Cauchy’s
theorem,
7— K\1/*x e’
dz=0.

When the radius B of the two large (near) quarter circles is very big, the
contributions to (34) corresponding to them become negligible (for r > 0),
and we get, by (33),

1 K//_}_iOO Z—K 1/,41 erz
2y
(35) ws(r, #%) = / (=) o

"—joo

This relation is used, in the first place, to show that ™ ws(r,k?) is
real (recall that v = 1/k). To see this, look at the little semi-circle v in
figure 3, keeping in mind that our present branch of ((z — Kk)/(z + K))1/~
is taken as positive for z = x > k. It is then clear that for —x < x < &,
((x — K) /(e + K)V*F = e™™/"((k — ) /(5 + x)DV/", with ((k — x)/(x + )"
taken as positive on that range. Letting <" = 0 in (35), we thus obtain




HARTREE’S THEOREM 177

k" + iB

\FN
»KZ”—iB
FIGURE 4
) oo — oy /K iry
2y __ (141 —miv kh—by £
wa(r,k”) =(—1)""e /_oo<’€+i)’> (yz+,€2)z+1dy’

with ((k — iy)/(k + iy))"/* assuming complex conjugate values at y = *£|y|,
due to Schwarz reflection of ((k —2z)/(x +2)/* across the interval (—k, k).
Reality of the integral on the right (standing by itself) is thus manifest, and
the above statement proved.

In the next §, we shall use (35) with x” tending to k from below.

6. The second solution of (21) which is really of interest to us will be
obtained from the difference w(r, k*) — ws(r, £%). From (31) and (35) we
have

Iy 1"y o
5 ) 1 K +ioo K T4+ioco 7 — K l/m erz
wi(r, K7) —ws(r,K7) = = - ( ) T K
l K —ioo K —ico Z+ K (Z “K")

where —x < k" < K < K/, k' and K” being otherwise arbitrary. In both of

the integrations on the right, we may use the branch of ((z — k)/(z + k)<

specified in §5, since it agrees for Re z > k with the one employed in §4
and in (31).
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In all of the work of this paper we are concerned with large values of
v = 1/k; there is therefore no loss of generality in our assuming, whenever
necessary, that v = 1/k > I+1, and we henceforth do so. In this circumstance,
we see from figure 3 that the difference

li/ K“ 7 — K 1/,.; erz
= .
K/ —ioo K —ioo Z+ K (22 - FLZ)Z”H

will tend to zero when k” T k and ' | k. Passing to that limit in the
preceding relation, we thus get

(36) wi(r, k%) — ws(r, K7

- [ AER)" - ) e
ry s + K . LK 2 — rylH1 -

In this formula, z; is understood to lie on the right edge of the branch
cut [kK,k+i00) and z_ on its left edge; we need to work out the difference
in curly brackets standing on the right. But that difference can be read off

from figure 5; it is
(1 — =2l (LK) e
Zt+ + K

FIGURE 5
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Here the quantity ((z4+ — k)/(z4 + k))}/* is nothing but ((z — K)/(z+ k)~
determined by the branch used in §4. Therefore (36) becomes

1 — e—27riv K41 00 z—K 1/k e’?
(37) wy(r) — ws(r) = ——T—L <z+ K) @ — 2 dz,

with the branch from §4 understood on the right. .

We now recall that wi(r, k) is real (§4) and that ™ ws(r, k) is also
real (§5); for these reasons we multiply (37) through by ™ and transpose,
getting

K—+ioo

v : 72— K\1l/~x e’? i
" wy(r) — 281n7n//,i (z T ;-;) @y dz = e™ws(r).

Taking real parts, we find that

K+i 00

— 1/k rz
(38) wy(r)cosmr —2sinmv Re (Z ﬂ) ¢ T dz
. 7+ K (Z2 _ K'/Z)l_*_

= eﬂivw3(r ) )
where, as seen in §5, the right side decays exponentially when r — 00.

Understanding always the branch of ((z—k)/(z+ k)/* from §4, we now
put

K-+ioo

(39) wo(r, k%) = —2 Re /

K

z— K\ !/* e’ 4
(z_’_’{,) & — 2 <

for 1/k > 1+1 and r > 0. This function is clearly continuous for r > 0 and
we claim that it is a solution of (21) in (0, 00).

Since wi(r) and ws(r) are both solutions of (21), that follows from (38)
except when v is an integer. That case must be handled by direct examination

of the integral in (39). Unfortunately, the conditions noted at the end of §3
are not fulfilled for that integral when [ = 0. But we do have

K+ico 7 —K 1/k e’? 7 — K 1/k e’
( ) T = ( ) 7 oy ©
" z+K (% — K*) c\z+ K (z2 — K?)

with the path £ shown in figure 6, as long as » > 0 and 1/x > [+ 1. Indeed,
since we are using the branch of ((z— k)/(z+ g/ s from §4 in the integral
on the left, the relation follows by the usual application of Cauchy’s theorem
(with that same branch on the right). This being the case, it is enough to
check the conditions from §3 for the integral along L, and they are found
to hold when r > 0.

We have arrived at essentially the basic relation used by Hartree. Putting

together (38), (39) and the above observations we obtain
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THEOREM 2. For [+ 1 < 1/k < oo equation (21) has, in (0,00), two
solutions, wy(r, k%) and wy(r,k*), given by (25) and (39) respectively, both
continuous down to the origin. For each such K, the sum

wi(r, K,Z) cos v + wy(r, K*) sin Ty

decays exponentially as r — 0.

7. The behaviour of w;(r, x*) for kK — 0 was discussed towards the end
of §4, and now we have to take up that of w,(r, x%). For this it is best to
replace the straight path of integration [k, k+io00) used in (39) by the contour
I'x shown in figure 7. That replacement is justified by the usual appeal to
Cauchy’s theorem, and we have

(40) wo(r, K*) = =2 Re w(r, K?),
where
B Z— K:) I/K’ erz
41) w(r, Kk )—/m(z_‘_’i @ dz .

As in (39), the branch of ((z — K)/(z + K)/* from §4 is to be used in this
integral.

It is convenient to look on I', as consisting of the segment [x, 1] followed
by I', the upper part of I, because the latter does not depend on the parameter
k (see figure 7). We can thus rewrite (41) as
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FIGURE 7

1 . 1/k rx
X K €
42) w(r,k?) = / <x—|— ,{) (x2 — K2)IH dx

K

7z — K\1/~x o
d
+/r(z+f‘é) (2 — R %y

and we proceed to look separately at the two integrals standing on the right.
Concerning the second one we note, as in §4, that

z—r\Y® ) 2% 2% 2k8
(E8)" (222 20y,
2+ kK 3z 5z 7z

this in fact holds uniformly on T as long as 0 < k* < 1. For z on I" we
also have

1 1 K2
@ — Byt~ R P —¢+h log(l B z—2)
1 I+ Dr* A+ Ds* (4 Dr®
A2 exp( A 3% ) ’

and the power series in ( ) converges uniformly on I' as long as
0<k?<1.

From these results we get
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Z— K 1/ 1 e—Z/Z (9(2))2 (9(2))3
43) <Z+ﬁ3) .(22-&2)z+1 = 72042 <1+9(Z)+ X + 30 —{—)
for z on I", where
I+1 2 I+1 2 | =l
44 9 = 2 R 4 = 6 =
= ( z? 323) " ( 2z 525)+H ( 328 7z7) T

The second right-hand integral in (42) is thus equal to

—-2/z,rz 2 3
CORNNY [l PRI o P
r

z2+2 2! 3!

It is clear from (44) that this expression is analytic in k* for |k*| <1 (sic!),
and tends to

—2/z 1z
e e
(46) / ———dz
o A2
as k — 0 the convergence is obviously uniform in r on any bounded interval
0<r<a.

The first right-hand integral in (42) is examined with the help of a technique
to be used again later on. When v = 1/x > [+ 1, that integral can be rewritten

as 1
2 vl g
- =)
L ( X+ K (x + k)22 *

and on putting £ = 1/(x + &), this goes over to

1/2k £ I—
(47) e / (1 _ -’5-) gl ge
/(A+K)

v

2 v
Here we recall that for fixed £ > O the expression (1 - -Vé) increases

with v for v > 2£ and is therefore < e~%¢ : that is thus the case for the £
[+ 1

v

appearing in the integral (47). Since v —[ -1 = v( 1—- ) , we see from

this that (47) tends by dominated convergence to

—2/x
—2 2l r
(48) /1 E¢ler/tgde = / —m

as K — 0, and that the convergence is uniform for r restricted to any bounded
interval of [0, c0).

Putting these results together we see from (42), (46) and (48) that, when
k— 0,
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2/zerz
(49) w(r, k%) — / Az

uniformly on any bounded interval in [0,00); here I'g is I'x for kK =0, ie.,
(0, 1] followed by the contour T" (figure 7).

Denoting the right-hand member in (49) by w(r,0), let us first compute
w(0,0). When r = 0, the contour Iy in (49) can be replaced by (0, c0)
(again by Cauchy’s theorem), so we get

oo —2/x
(50) w(0,0) = / o dx— o
0

x2+2 22i+1 ’

Let us next check that the function w(r) = w(r,0) satisfies (21) with Kk =0
for r > 0. Here we run up against the same difficulty as at the end of §6
when [ = 0, and we get around it in similar fashion as we did there, replacing
I'p in (49) by the contour I'j shown in figure 8.

FIGURE 8

The conditions mentioned at the end of §3 do hold for thls contour F’ and

the function g(z) = z7*2e%/%, provided that r > 0. The function w(r,0)
thus has the property just stated.

Finally,
(51) W'(r, k%) — W'(r,0)

uniformly on any compact interval in (0,00) (sic!) as &k — O. Showing this
again gives us trouble when [ =0, so we replace I’ in (41) by the path I,
illustrated in figure 8; we have then to verify that
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72— K\ 1/~ ze'™® e~ 2/
(52) ./F’ <Z+ ﬁ) (2 — K2)I+1 dz — - —_Z_Zl_-l——l— dz

in the manner stated when x — 0. That is done by arguing as we did above
for w(r,x?); one considers separately the portions of the left-hand integral
taken over the upper part, T, of T (see figure 8) and over the segment
[k, 1].

Referring to (40), (49), (50) and (51) we see by the above discussion that
we have proved

THEOREM 3. When k — 0, the function w,(r,&*) given by (39) tends
uniformly on any bounded interval of [0,00) to

e~ 2/2pm2
ZZZ+2

(53) wo(r,0) = —2 Re / dz,

0

a solution, for r >0, of (21) with k = 0. At the same time, w(r, k*) tends
uniformly on any compact interval in (0,00) to wj(r,0). And we have

@2n!

(54) w(0,0) = e

(The reader is reminded that, in (53), I'y consists of (0, 1] followed by the
curve I' shown in figure 7.)

It is worthwhile to note that when I = 0, the convergence of wh(r, K?)
to wy(r,0) for kK — O will not be uniform in bounded intervals of the form
(0, rg). One can show (using, e.g., Jordan’s lemma) that the right-hand member
of (52) is equal to the improper integral

—~2/z 1z

e e

/ dz
To Z

when [ = 0; here the integral over the vertical portion of T’y is understood

as
A 21y griy

lim dy.

A—00 Jy y
The last expression behaves like log(1/r) for small r > 0. Appearance of
the logarithm is of course to be expected here because the two roots of the
indicial equation for (14) differ by an integer (see [11], p. 160 ff); when [ > 1
the logarithm will again be found in the higher order derivatives of w,(r,0).
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8. A bit more information about the behaviour of wy(r,x?) for kK — 0
will be needed for a correct argument along the lines of [3].

It was seen in §1 and at the end of §4 that u(r,x*) (the solution to (6)
constructed in §1), u'(r, k%), wi(r,x?) and w!(r,s?) are all analytic in K*
for < near 0. This implies in particular that the derivatives with respect to

2

v of those functions (equal to —k“— of each of them) all tend to zero

as v — oo. We shall need to know tﬁis and, moreover, to be assured that
wo(r, k%) and wh(r, k%) enjoy the same property (when r > 0). The last two
functions, however, are not analytic!) in x* (at 0), so for them a special
examination is required.

As in the preceding §, we work with the function w(r, %) given by (41)
and related to wo(r, %) by (40). According to (42), w(r, k%) can be expressed
as the sum of two integrals of which the second, equal to (45) is, as noted
immediately after that formula, analytic in x* for k near 0. Our only concern,
then, is with the first integral on the right in (42), equal, as we noted in the
last §, to

(55) J(r, /iz) — /1 (1 _ 2K )V—l—l i%

X+ K (x+/i)2l+2dx'

2 2
Let us work out o, <) = — 52_(2J_(r_’f_)
ov Ok

vanishes for x = k, we have

aJ(r, k%) ! 26 \V—Im2 xe™
56 22 ok — — _ ) __xer
(56) K P K(v—1 1)/'; (1 T ot )i dx

]
2k \v—I-1 e™
— QI+ 2)K? (1— ) S S—
(2 + )R/K PRI G+ R)2T3 dx

1
9 v—i—1 2 rx
—~/(1— ”) -1og(1— 'i)- __ ix.
< X+ kK x+rK/) (x+ K)Ht2
laken by themselves, the first two integrals on the right are analogous to the
one in (55), studied in the last § ; as Kk — oo, each tends to the finite quantity

I —2/x_rx
e e
/0 T dx .
The first two right-hand terms in (56) are therefore O(1/v) and O(1/v?)
respectively when v — oo, and we turn to the third one.

. Since the integrand in (55)

') See Addendum at the end of this paper
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For the latter, we observe that 0 < 1 — < 1 for x > k, making

X+ K

on (k,1]. The integrand in

57) /,: (1 B xiis:)lhlﬁl -log(l N xiie) (x —}—e:)”” dx

is therefore bounded in absolute value by

rx

1 (1 2K >V—l—2 e
e ] (x + K)2+2

on the range of integration. But now we find, working as in the last §, that
the last expression is in turn bounded above by

e-—l/errx

(58)

o220
say, for x > k and large v. On the other hand,

2K
X+ K

for each x > 0. Therefore, since (58) is integrable on [0, 1], the quantity (57)
tends to zero by dominated convergence as v — 0.

Each right-hand term in (56) thus tends to zero as v — oo, and we have
oJ(r,1/v?)
Ov

Going back once more to (42) we see by our initial observations that
Ow(r,1/v*)/0v — 0 as v — oo, whence

log(l— )——»O as Kk — 0

— 0 for v — 0.

Ows(r, 1/v?)
ov

By very similar considerations which we hardly need dwell on, one shows
that for r > 0 (N.B.!),

82w2(r, 1/y2>
Ovor

it is only necessary to note that when [ = 0, one should replace the second

integral on the right in (42) by one over I" (see figure 8). In such fashion

we arrive at

— 0 forv — .

(59)

(60)

>0 as v — 00;
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THEOREM 4. For the function wy(r, k%) defined by (39) we have (59) for
r >0 and (60) for r > 0.

9. From the solutions w;(r, k%) and wy(r, %) of (21) constructed in §§4,6
we obtain, by (20), two corresponding ones to (14) (where A = k%), namely

wy(r, k%) wy(r, K2)

A —a

When « — O these tend respectively to solutions v;(r,0), v,(r,0) of (14) for
A =0, and the manner of that convergence can be read off from the results
in 84, from Theorem 3 in §7 and from Theorem 4 in the last §.

(61) v (r, K2 = vy (r, k%) =

The functions vi(r, k), v(r, k?) are linearly independent for 1/x > 1+1,
including for k = 0. To see this, take r = 0 in (39) and note that then the
path of integration [k,k -+ ico) used there can be turned down to the real
axis (by Cauchy’s theorem; cf. the justification of (50)). In that way, we find

that -~ y 5
2 . x - /‘t'/ K
wy(0, K7) = —2/ <x+ K) (2 — 2y

with the right side obviously < 0. Thus,

0 2
va(r, K?) ~ E-Z(—Z’H—) for r - 0
r
with w,(0, £%) # 0, whilst
2
vi(r, k%) ~ a:—l)—!rl“ for r — 0

(including for x = 0) by (28). Linear independence of v; and v, is hence
clear when x > 0, and (54) shows that the property persists when k = 0.

LEMMA. When A > 0, a solution v(r,\) of (14) decays exponentially as
r — oo if and only if it is of the form

(62) ¢ (vi(r, A)cos v + vy(r, \) sin mv)

with some constant c. All other solutions of (14) grow exponentially as
r— 00. (As usual, v = 1/\/X.)

Proof. Tt follows from Theorem 2 (end of §6) that it is sufficient for
v(r,A) to be in the form (62) in order that it decay exponentially.
For the necessity, take any solution v(r,\) of (14), assumed to have

exponential decay, and note that since vi(r,\) and vy (r, A) are linearly
independent solutions of (14), we have
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(63) v(r, A) = avi(r, A) + buvy(r, A)

with constants a, b.

In the case where sinmv # 0 we can choose ¢ in (62) so as to make
¢ sinv = b ; subtraction of (62) from (63) will then show, thanks again to
Theorem 2, that (a—c cos mv)v,(r, A) also decays exponentially when r — co.
As observed in §4, vi(r, \) is a constant multiple of the usual series solution
to (14) obtained in books on quantum mechanics; the elementary discussion
of that solution found in those books (see, e.g., p. 83 of [1]) shows, however,
that v (r, \) grows exponentially with r unless 1/ VA = v is an integer. Here,
sinv # 0. Therefore a — ccosmv = 0 and the right side of (63) coincides
with (62).

- Consider now what happens when sinwv = 0. Then cosnv = +1 and
we can adjust ¢ in (62) to make ¢ coswv = a; in this case we find from
(63) and (62) that bv,(r, \) must decay exponentially when r — oo. Since
v=1/ VA is now an integer, we know that v(r, \) must be of the form
r'*le=*p(r) with a certain polynomial p(r) (see, e.g., pp. 80-86 of [1]). For
values of r beyond the last zero of p(r), bvy(r, A\) can be obtained from v,
by an elementary formula already used near the end of §1, viz.,

" ds _

n (105, )%

here ry is any suitably large quantity and A, B are constants (see [11], p. 122).
But we see immediately from this relation that when v;(r, A\) has the special
form just indicated, bv,(r, \) must grow exponentially with r unless B = 0,
i.e., unless buy(r,\) = Avi(r,A). Linear independence of v; and v, then
implies that A = b = 0 so, since sin7mv = 0, the right side of (63) must
coincide with (62).

This reasoning has in fact shown that v(r, \), given by (63), will actually
grow exponentially as r — oo unless it is of the form (62). The lemma is
proved.

b’Uz(T, )\) = A’Ul(r, )\) —+ B’U1 (r, )\)

COROLLARY. Let rg > 0. When X > 0, a solution v(r,) of (14) is in
Ly(ro, 00) if and only if it has the form (62) with v = 1/\/X

10. Now we can return to the argument of Hartree already sketched in
§2. The proper values A = x? for the differential equation (6) are determined
by the conditions that its solution u(r,A) constructed in §1 be in L,(0, c0)
and that u'(r, A) — (u(r, \)/r) also be quadratically integrable on (0,c0) (see
just before Theorem 1 in §1).
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In the circumstances of the present article, fulfillment of the first condition
implies that of the second one. Any continuous function u(r, A) is indeed in
1,(0,a) for each finite @ > 0 and that is also true of u(r, \)/r when (7) holds.
If (6) and (7) both hold, substitution of the latter into the former followed by
integration shows that u(r, \) is bounded on (0,a) and hence in L,(0,a). It
therefore remains to check that u/(r,\) and u(r,\)/r are in Ly(a,c0) when
u(r, \) is.

By (6) that is again true for w(r,\)/r when a > 0, and we are left
finally with [*°(/(r, \))*dr. Given that [ (u(r, N))*dr < co, the derivative
d(u(r, \))? /dr, continuous by (6), cannot, for any € > 0, be eventually always
> e or < —e when r — oo ; there is thus an increasing sequence of 7, tending
to oo such that u(r,, Nu'(r,, \) —, 0. We have, however,

/fn W (r, \)2dr = u/'(rp, Nu(ry, \) — t/(a, Nu(a, \) — / ” u” (r, Du(r, Ndr.

Here u'(r,\), like u(r,\), is in Ly(a,c0) by (6), so the integral on the right
remains bounded by Schwarz’ inequality when r, — co. At the same time,
the integrated terms tend to —u'(a, Nu(a, A\) by choice of the sequence {r,},
and we have faoo(u’ (r, \))*dr < co.

Our conditions on u(r,A) thus boil down to the requirement that u(r, )
be in L,(0,00) or, what comes to the same thing here, in L;(a, c0) for some
a > 0 (see above). We know, however, that for large r, beyond the support of
o(r), u(r,\) must coincide with some solution v(r,\) of (14) and therefore
be of the form (63). Our conditions for A to be a proper value of (6) therefore
amount to a stipulation that this continuation, v(r, \), of u(r, \) be in Ly(a, 00)
for some a > 0 (beyond the support of ¢(r)), and now the corollary at the
end of the last § shows that this happens if and only if v(r,\) has the form
(62). For A\ = 1/v* to be a proper value of (6) it is therefore necessary and
sufficient (at least when v > [+ 1, see Theorem 2) that

(64) u(r, \) = c(vy(r, A) cos mv + vo(r, \) sin mv)

with some constant c, for all sufficiently large r.
From (64) we immediately get

(65) u'(r, \) = ¢ (vy(r, A) cos v + vj(r, \) sin )

(for large r). This relation and the preceding one already serve to determine
the small proper values A > 0 of (6). It will indeed suffice to take (64) and
(65) with r set equal to one suitably large quantity ro, chosen at pleasure.

U,
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According to a standard uniqueness theorem (see [6], pp.6—7 or [11],
pp- 62-71), the quantities u(rg, \), u'(ry, \) cannot both vanish, for otherwise
u(r, \), satisfying (7), would be identically zero. Also,

v1(ro, Mvy(ro, A) — vy (re, Nvz(rg, A) # 0

on account of the linear independence of v, and v, (beginning of preceding §).
The last expression, called the Wronskian of v; and v,, is actually independent
of ro (see [6], p.7). From this it follows that we can put r = ry in (64) and
(65) and then solve for the ratio

COS TV : SIN TV

in terms of the other quantities involved in those relations.
When that is done, ¢ disappears and cos7v : sinwy works out to

(66)  (va(ro, Nu(ro, A) — va(ro, Nu'(ro, M) :
(_Ui(roa )\)u(l"o, )‘) + U1 (r07 )‘)u/(’ba A)) s

From the observations just made, it follows that both terms of this ratio cannot
vanish. Supposing that the second does not, we will have

vy (ro, Mu(ro, A) — va(ro, Nu'(rg, )
—vi(rg, Nu(rg, X) + v1(ro, N/ (ro, N) ’
and in the contrary situation, we get

_'Ui (7’07 )‘)u(r07 )\) + vy (rOa A)u/(r()) )‘)
v} (ro, Mulro, A) — va(ro, Mu'(ro, A)

Now it follows from the results in 881,4 and from Theorem 3 (end of
§7) that the terms of the ratio (66) tend respectively to

(67) cotmy =

(68) tan Ty =

v5(ro, 0)u(r, 0) — va(ro, 0)u/ (19, 0) and to — v (ro, 0)u(ro, 0) + v;(ro, 0)u'(ro, 0)

when x — 0; here the above remarks about u, u’ and the Wronskian
v1v) — vivy still apply, so the last two limiting expressions also cannot both
vanish.

If it is the second that does not, we put

V5 (ro, Mu(ry, 0) — vo(rg, 0)u'(rg, 0)
—v1(rg, Q)u(ro, 0) 4 v1(ro, O)u’(ro, 0)

(69) C=

and then recognize that

(0, 1/ ulro, 1/07) — valro, 1/ (ro, 1))
T0) ) = = Tulro, 1/02) + viro, LoD (ro, 1/7%)
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the right side of (67), is certainly defined for large v and must tend to C as
v — oo by the results just referred to.

For large integers n, C(v) must therefore be close to C when
n<uv<n-+1; on the other hand, cotmr decreases from oo to —0O as
v runs through (n,n + 1). We can thus expect to have a value v, of v,
n < v, <n-+1, for which (67) holds, yielding the proper value A =1/ v?
of (6). Since C(v,) is close to C, v, —n will be near to (1/m)arccotC.

coLTY Vs VvV
// \
Clv) vs v
2t WL WU (P S —
-
0 1 2
FIGURE 9

It is claimed that, in the present circumstances, the equation cotmv = C(v)
has precisely one root v, in each interval (n, n+ 1) corresponding to a
sufficiently large value of the integer n (see figure 9).

It is for this that we need the material from §8. According to the remarks
at the beginning of that §, each of the four partial derivatives

Ou(rg, 1/v*) 0 (ro,1/v®)  Oui(ro, 1/v3)  Ovi(ro, 1/12)
Ov ’ v ’ v ’ Ov
tends to 0 as v — oo, and by Theorem 4 that is also true for
o
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Ouy(rg, 1/v?) -, oS (ro, 1/12) |
Ov ov

Now when we refer to (70) we see that dC(v)/dv is the sum of a number
of terms, each involving one of the preceding six derivatives as a factor. There
is also a denominator equal to the square of the one in (70), but the latter
tends to the denominator in (69), here assumed to be non-zero, when v — o0,
and is thus bounded away from O for large v. It follows that

dC(v)

(1) dv

—0 as v — 0.

On the other hand, cot7r decreases from oo to —oo in each interval
(n, n+ 1), with
dcotmy
dv

s =7

there. This, and (71), show that the difference cotmv — C(v) will be strictly
monotone in (n,n + 1) when n is large and therefore, since C(v) — C for
v — o0, have precisely one zero, vy, in that interval. The above claim is
confirmed and we see moreover that cotn(v, —n) = cotmr, — C for n — o0,
making

Vp —h — ;arccotC, n— 0.

We must not forget to take up the case where the denominator in (69) does
vanish. But then the numerator on the right side of that formula is not zero,
and we can go through an argument like the one just made, based, however,
on (68) instead of (67). It is found that for sufficiently large integers n, (68)
has precisely one solution v, in each interval (n — %, n—+ %_), and that

v, —n—0 for n— 0.

In the whole of the preceding development, the quantity | has been taken
as fixed; that means that the differences v, — n really depend on the value
of 1 in (6) as well as on n. In order to remind ourselves of this dependence,
we write

(72) Ay(n) = vy — 1.

Then the conclusions reached in this § can be summarized in

y
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THEOREM 5. The smaller proper values X > 0 of (6) are all given by
the formula
1
RO

(73) A

where —-% < AN(n) < 1 and n runs through all the larger integers. If the
denominator in (69) is not zero, 0 < Ai(n) < 1 and

1
(74) Ai(n) — A; = —arccotC as n— 00,
Yis

with C given by (69). If that denominator is zero, —% < A(n) < 3, and (74)
holds with A; = 0.

The small proper values of (6) are thus nearly of the form 1/(n + A;)?*, and
we have arrived at what is essentially Rydberg’s empirical result.

Our proof of the last theorem has relied especially on Hartree’s fundamental
relation (38), as well as on the properties of w; and w, established in §§4,7
and 8. In [3], Hartree obtained his relation by first using the method of
Frobenius to get explicit expansions of w;(r,x?) and wy(r,s*) in powers
of r (involving also log r for the second function), and then comparing his
results with a similar series expansion of what amounts to ws(r, x2). This
approach has been taken up again in more recent publications, sometimes
without mention of [3]; see, for instance, [4], [7] and [9].

11. For a long time physicists have preferred to work not with A;(n), but
with
(75) biimy +n) = my; — A(n),
where m; is some positive integer depending on /. They also put
(76) O =m—A = lim §(m + n)
(see (74)), and it is §; that is called the quantum defect.

Introduction of the integer m; enables us to adapt (73) so as to get, in pure
ad hoc fashion, a representation of all the proper values A > 0 of (6) and not
just the smaller ones. The original restriction of (73) to the larger values of
n was due to two limitations in our procedure. Considering, for example, a
case where A; > 0, i.e., where the denominator in (69) is not zero, we were
required, in the discussion of the last §, to work with large values of v for
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which the behaviour of C(v), given by (70), had settled down; for smaller
values of v the denominator in (70) might pass several times through the
value 0. This inconvenience could be dealt with by alternating between uses
of (67) and (68), but then there is another problem: in §6, our verification
that w,(r, k?) was a solution of (21) (and hence wv,(r, k%) a solution of (14))
required us to take v > 1+ 1. We may, however, need to use (73) with
n <141 in order to get all the proper values of (6). The 2p state of lithium,
for example has an energy corresponding to the A given by (73) with n =1
and A;(1) about 0.96; here the value of [+ 1 is 2.
Let us substitute (75) into (73) and then replace m; +n by n; we get

1
(n — &(n))?’
and if (73) has been proven to be valid for n > M, say, (77) will hold for
n Z my —l— M

(77) X ==

But there could also be a finite number of larger proper values A, not
described by (73) with n > M, and hence not given by (77) with n > m;+M.
Supposing that there are N of these, we need only take m; so as to have
M+m; > N, and then we can represent them by (77) with n equal successively
toM+m—N, M+m —N+1,...M+m; — 1, after assigning appropriate
values to 6;(n) for these n.

In such (trivial) fashion, (77) can be set up so as to accomodate all the
proper values of (6), and by going through the procedure for each [ we get
a formula representing all the proper values of (3). For each [ the limit §; in
(76) exists (by Theorem 5), and the corresponding proper values A are given
asymptotically by 1/(n — 6;)* with n — oo.

A certain arbitrariness is obviously associated with the manner just indicated
of choosing my;, so it may not be amiss to note that it seems possible, at
least in principle, to arrive at a rational determination of that quantity by the
methods of the present article. An attempt to carry this through properly runs
up against serious difficulties; let us nonetheless suggest a procedure which
is perhaps feasible.

The idea is simple enough. Fixing again I, we replace the function ¢(r) > 0
standing in (6) (and, without loss of generality, not identically zero) by T¢(r),
introducing a parameter 7 allowed to range from O to 1. That gives us

du(r) 2 T9(r) UW+1 . ?
rEabd Ch B = \)ut =0, }

and the proper values A of this differential equation will now depend on 7.

(78)

r r r2
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For 7 = 0, (78) reduces to (14), the radial Schrodinger equation
for hydrogen, having, as we know, the proper values A = 1/n* with
n=1+1 1+2,... (see [1], pp-80-86). We fix a large value of n and
take the proper value \® = 1/n? of (78) corresponding to 7 = 0. As 7,
starting from 0, gradually increases, A turns into a proper value A of (78)
whose variation with 7 can be described by a standard perturbation formula,
viz.,

O /OOQ(QS(r)/r)(uT(r,/\gﬂ))2 dr.
ar

(79)

?

/ oo(uf(r, M) dr
0

here u,(r, \{7) is the solution of (78) obtained by the procedure of §1 and
corresponding to the value A = A{”. For a rigorous justification of (79), see
[12], pp. 247-251.

What (79) shows in the present circumstances is that A\ continually
increases with 7. Comparing it with the initial value A? we can therefore
write

1
80 A —
= T (=67 (n))?

with a quantity 51(7)(n), also increasing as T does, and such that 51(0)(n) = 0.

When 7 has increased to 1 the corresponding proper value A{) of (78)
must coincide with one of the proper values of (6) and hence be given by
(73) if n is large; we will thus have

1
O _
ey " T By

with a certain (large) integer m. Comparing (80) and (81) we hence find that
61(1)(71) =n—m—A(m), i.e., writing just 6;(n) for 61(1)(n) and my, for n—m,
that '

Si(n) =my, — N(n —my ) .

Here the integer m; , depends on both indices, but I think it very plausible
that it should become constant (for fixed [) when n is large. To see why that
should be the case, let us imagine the graphs of A{™, )\f;al, etc. versus T
for 0 < 7 <1, each lying below its predecessor. (It seems very likely that
those graphs cannot cross or touch each other.) Each one starts at a point
(0,1/n%) and ends at a point (1,A”) with A\ equal to one of the values
on the right in (81). On the other hand, any such value (for m large) is the
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ordinate of the right end-point of one of the graphs. Taking, indeed, such a
value A\, = A,(1), we note that it is a proper value of (78) corresponding to
7T = 1. We can now let 7 diminish from 1 to O; that gives us a changing
proper value A\,(7) of (78), equal to A\,(1) for 7 = 1 and varying according
to the appropriate version of (79). When 7 arrives at the value 0 we end with
a proper value A\,(0) of (14), necessarily equal to 1/ n®> for some n>1+1.

Thinking of the pattern formed by these graphs and considering, especially,
that the A;(m) are all practically equal to A; for large m, one cannot help
believing that m;, must stay constant when n is large. If that is indeed so,
we may denote the constant value by my; and, in that way, arrive at (75).
I find this argument convincing, but must own that it falls short of a real
proof. If it could be made rigorous, we would have a natural procedure for
the specification of my;.

Would that procedure, should it prove legitimate, give us a large enough
value of m; to make the ad hoc one outlined at the beginning of this § work,
i.e., to make (77), used in conjunction with (75), represent all the proper values
of (6) ? That would evidently depend on our having a suitable limitation on
the quantity N involved in the discussion of (77).

If the second approach is sound, it should, for concrete choices of the
function ¢(r), yield values of m; agreeing with those obtained by the numerical
treatment of (6). Experience shows that the values of m; obtained in that way
are always large enough to work in the ad hoc procedure, but this fact cannot
be explained using the methods of the present article. It is a consequence
of the smallness of N which, in turn, depends on the architecture of atomic
structure and finally on the Pauli exclusion principle. One of the things leading
up to that principle was indeed Bohr’s early estimate of some of the “true”
values .of® §; for sodium, made with help of the old quantum theory.

12. All the proper values A of (6) are thus given by (77) (beginning of
last §), and if, in that relation, we let [ run through the values 0,1,2,...,
we get all the proper values of (3). The quantities 6;(n) are close to their
respective limits 6; when n is large and, in actual fact, even when n is not
so large, so that the approximate formula

1

A (n— 6;)?

(essentially Rydberg’s original one) can be used with fair accuracy to get all
the values of A.
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It is nevertheless important to gain more precision by describing the actual
dependence of 6(n) on n. A long time ago Ritz gave an empirical relation

a
o(n) = 6, + —;
n

which, in many cases, works very well; an improvement of this is
a b
! 4 ! |
(n—06p)*  (n—0b)
One reason for the closeness of Rydberg’s original formula to the truth is that
these refinements do not involve a term behaving like 1/n for large n.

(82) bi(n) = b1 +

Such representations are, as we shall see, implied by our charge cloud
model. Let us write

(83) v(n) =n — 6;(n)

(keeping, as usual, [ fixed). One should not confound v(n) with v, the
quantity involved in the reasoning of §10. Referring to (72) and (75) we see
that v(n) and v, are related by the formula

(84) Vp = I/(l’l + ml) .

We shall obtain an asymptotic development

b,
(85) §i(n) = & + +
l T ( ))2 %
for 6,(n) in terms of v(n); here a;, by, ... are certain constants and only even

powers of 1/v(n) are involved on the right. The series does not generally
converge, but if it is broken off after the term in (v(n))~%, the error will be
O((v(n))~%#~2) for large n.

We see from (83) that the approximation

6i(n) >~ 6; +

(())2

differs from Ritz’ original one by O(1/n®) for large n, and that the sum
of the first 3 terms in (85) differs from the right side of (82) by O(1 /ns).
Expressions like (82) are currently employed, with (77), in spectroscopy and,
suitably adapted to take account of electron spin, represent energy levels with
very great accuracy. Regarding this the reader may consult p.351 of [5] and
the table on p.353 therein. (That table has an obvious misprint in the entry
of ¢; for lithium; a nought is missing between the decimal point and what
follows it.) Let us proceed to deduce (85) using the methods of this paper.
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We shall find it convenient to obtain a formula equivalent to (85) for
A;(n) = my — 6i(n+ my) ; according to (75), (76) and (84) such a formula must
read

a b
(86) A=A — — — — — ..
Vn Vn

This being intended as an asymptotic development we may, in deriving it,
confine our attention to large values of n, and that puts the material of §10
at our disposal. We return, therefore to the relations (67), (68), (69) and (70)
used in that § to determine A;(n) = 1/,1‘— n.

It will be enough to go through the treatment of the case where the
denominator in (69) is not zero; then v, is obtained for large n by solving
(67) (with A = 1/v?). As we have seen, v, in this circumstance is the unique
root of the equation cotmr = C(v) lying in (n,n+ 1), where C(v) is given
by (70). Here, A;(n) is simply the fractional part of v,, so we will have

1
A;(n) = —arccot C(vy,) .
T

Now when n i1s large, C(v,) — C will be small, and we can expand the
right side of the preceding formula in powers of this difference. According to
(74), that will yield

A(n) = A+ A1(Cwn) — C) + Ax(C(vy) — COF + ...,

and we see that (86) will follow provided that we obtain an asymptotic
development

Ci (6%
C)=C+—S+—5+...
v v

for C(v) in powers of 1/v*. The rest of our work is directed towards that
goal.

Looking at (69) and (70), we see that C(v) would have an actual expansion
of the desired kind if each of the six functions appearing on the right in (70)
were analytic in 1/v? at oo. For u(rg, 1/v%), u/(rg,1/v?), vi(ry,1/v?) and
vi(ro, 1/v?) that is indeed frue by work in §1 and the corresponding results
about wi(r, x*) noted near the end of §4. But vy(rg, 1/v%) and v5(ro, 1/v%)
also figure in (70) and they are not analytic?) in 1/v? (at oo). Instead,
they have, as we shall now prove, asymptotic developments in powers of that
quantity. And that is enough, together with the analyticity of the other four
functions, to guarantee such a development for C(v).

2) See Addendum at the end of this paper
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From (61) and (40) we have

wa(ro, K%) Re w(ry, K2)
’UZ(rO) Kz) - 2 :)l = ~2 I‘Z 3
0 0

where w(ry, %) is given by (41) (in §7). The property in question therefore
holds for wvy(rg, 1/v*) and vi(rg,1/v?) thanks to

THEOREM 6. If r > 0, w(r,k?) and w'(r,k?) both have asymptotic
developments in powers of k*, valid when k — 0.

Proof. Considering first the function w(r, k%), we use (42) to write it as
the sum of mwo integrals, the second equal to the one in (45). The latter is
even analytic in k> as remarked just after (45), so it remains — and that is
our main work — to establish an asymptotic development in powers of x? for
the first right-hand integral in (42), that is, for

1 . 1/k rx
N x FE) e
(87) Jmm)—ll<x+ﬁ T

In order to study this integral, we split it up further into two, one
over (k,x%) and the other over [k%,1], where « is a fixed exponent with
0 < a < 2/3. To estimate the first of those, we can follow the procedure
used to treat (47), getting, for v > 2(I + 1),

R x — Kk\ 1k e’™ ke 2k \v—i-1 e™
(88) /m x+ K (x? — g2)IH1 ax /m 1 x+ K (x — r)H+2 ax

RS —=2(1—(+)K)/(x+K) ,rx K —1/2x
e e e € o
< dx < ———dx=0( /3"

/K (x + k)22 N / X2l ( )

for Kk — 0.
The other contribution to J(r, k) is

1 _ 1/;{, rx
X KR €
89 )
(89) /,(ua (x + K/ (% - KgH)H] dx,

and our idea now is to use (43) in this integral, with 6(z) given by (44) and
z = x. That can be done. Relation (44) can indeed be rewritten thus :

o0 =2 1 Lo A

_@%1+%&2 17K\
»\3 5 x) +7<;) +>
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When x — 0, the factor x2/x* and the ratio (k/x)* occurring in each of
the series on the right tend uniformly to zero for x > k. This means, in the
first place, that the expansion (43) can safely be employed in (89), yielding
for that integral the value

vV —2/x _rx 2 3
©1) / e——e—( +9()+(9(x)) 0x) +...)dx.

x2+2 31

From (90) we see in the second place that A(x) is uniformly O(x?/x°)
for small x > 0 and 1 > x > k%. If, therefore, we break off the series
appearing in (91) after, say, the term (0(x))’ /p!, we make an error in the
integral bounded above by

——2/x rx
O(KZ‘DH)/ 2435 ST 4 = 0(=™1%)
in absolute value. The integral (91) is therefore equal to

—2/x rx

(92) Z — / 5 (00)" dx + O(k%#1?)

m=

for small x > 0.

Let us now fix a value for the integer p. Then we must obtain a
development, up to terms in % and with error O(k%*%2), for each of the
integrals involved in the summation in (92). For that purpose we look again
at (90) and observe that it can be expressed as

-1 .
o0 o L (L (1), Lt ey

—1
2/% 1 2 14o0(1) r\?
(Z-——( ) 53 (G))
B 2j+3 2p+3 \x
with o(1) terms tending uniformly to zero for 1 > x > k* and K — 0. Using
this finitary representation, we see that each integral of the form

L —2/xrx
e 4
| s

0<m<p,is equal to a sum

—2/x " —2/xerx

1
e
(34) Z * / T2tz Rjm(1/x) dbx + O(k+%) Aa L ar,
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where the R;,(1/x) are certain polynomials in 1 /x and L, is some (usually
quite large) exponent depending on m (and p). Here the remainder term is
again O(k*1?) (see above) so, using the expressions (94) in (92), we find
for the latter the value

—2xrx

(95) Z 4 / s Ri(1/x) dx + 0=+

with polynomials Rj(1/x) in 1/x. It is clear that these polynomials are
precisely the ones that would be obtained if we simply substituted (90) into

x

the expansion €®® = Z(H(x))m /m! and then grouped together all the terms
m=0

involving each power k¥.

We now replace each of the p integrals figuring in (95) by the corresponding
quantity

e 2/xerx
(96) / e ———Ri(1/x)dx = s,
0

finite and independent of k. Doing this, we make an error of at most
O(e~1/3%%) — cf. (88). The expression (92) thus works out, by (95), to

p
D5k + 0P + 07/
Jj=0
this, then is an evaluation of (91), i.e., of (89).
Referring now to (88) we see finally that

p
J(r, &%) = " sik¥ + 0K +2) + 0(e7/3<7),
Jj=0

and here e~ 13" is certainly O(k¥*12) for each exponent p when kK — 0.

In this formula, moreover, the s; do not depend on the integer p ; that follows
from the above observation about the polynomials Ri(1/x) figuring in (95)
and (96). We have thus established the asymptotic development

(97) J(ry6%) = so+ 512 + okt + ...,

valid for K — 0. As noted at the beginning of this proof, (97) immediately
yields a similar development for w(r, x2).

It remains to deduce the same kind of development for w’ (r, k%), and it
is here that we need r > 0 when [ = 0. Discussion of J' (r, k%) proceeds




202 P. KOOSIS

exactly as above and may be omitted. The only change in our work consists
of the insertion of a factor x in the integral on the right in (87) and in each
of the integrals deriving therefrom, and one arrives at the analogue of (97)
for J'(r,xk*) without further ado.

In treating d/dr of the second right-hand integral in (42) it is better,
when [ = 0, to replace the path I" used there by I, shown in figure 8. The
formulas (43) and (44) can be used in the resulting integral, and show it to
be an analytic function of xk?> when r > 0.

Proof of the theorem is now complete. Before going further, and coming
to the end of this paper, it is worthwhile to point out that the development

(97), the same as
2/x rx

Z 2]/ 22 — Ri(1/x) dx,

is what we would obtain formally if we substituted (90) into the expansion of
e’® in powers of #(x), grouped together all the terms involving each power
k% and, finally, plugged the resulting series into the (meaningless) formal

expression
1 e—2/x69(x)erx P
X .
) K2l+2

We now recall the conclusions of the discussion pursued at the beginning
of this §. According to them, the last theorem has the

COROLLARY. The asymptotic development (86) holds for each of the
functions A;(n).

This immediately implies the corresponding development (85) for the quantities
6;(n) appearing in (77). |

ADDENDUM

At the beginning of §9 and again in §12 it was said that the functions
wo(r, k?) and vy (r, k%) = r~tw,(r,x%) — the first given by (40) — are not
analytic in x* at the point « = 0. This can be seen by referring to a
(complicated) explicit representation of wvy(r, k%) in terms of known special
functions; one may, for instance, consult pp.181-184 of [4] and especially
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