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GEOMETRIC K-THEORY FOR LIE GROUPS AND FOLIATIONS

by Paul BAUM and Alain CONNES ™)

1. INTRODUCTION

For a C*-algebra A, let Ko(A), Ki(A) be its K-theory groups. Thus Koy(A)
is the algebraic Ky-theory of the ring A and K;(A) is the algebraic Ky-theory
of the ring A ® Co(R) = Co(R,A). If A — B is a morphism of C*-algebras,
then there are induced homomorphisms of abelian groups K;(A) — Ki(B).
Bott periodicity provides a six term K-theory exact sequence for each exact
sequence 0 - J — A — B — 0 of C*-algebras.

Discrete groups, Lie groups, group actions and foliations give rise through
their convolution algebra to a canonical C*-algebra, and hence to K-theory
groups. The analytical meaning of these K-theory groups is clear as a receptacle
for indices of elliptic operators. However, these groups are difficult to compute.
For instance, in the case of semi-simple Lie groups, the free abelian group with
one generator for each irreducible discrete series representation is contained
in Ko C*G where C*G is the reduced C*-algebra of G. Thus an explicit
determination of the K-theory in this case in particular involves an enumeration
of the discrete series.

In this note we shall introduce a geometrically defined K-theory which
specializes to discrete groups, Lie groups, group actions, and foliations. Its
main features are its computability and the simplicity of its definition. In the
case of semi-simple Lie groups it elucidates the role of the homogeneous
space G/K (K the maximal compact subgroup of G) in the Atiyah-Schmid
geometric construction of the discrete series [4]. Using elliptic operators we
construct a natural map from our geometrically defined K-theory groups to the

*_) The present paper was written in 1982 and distributed as an IHES preprint, but never
published. We are grateful to the Editors for offering us to publish it without change in this
Journal.
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above analytic (i.e. C*-algebra) K-theory groups. In all computed examples
this map is an isomorphism. The picture that emerges is of two parallel
theories: one analytic and one geometric. Elliptic operators provide a map
from the geometric to the analytic theory. We give evidence for the conjecture
that this map is always an isomorphism. In particular we prove that the map
is injective for foliations with negatively curved leaves. We then explore some
corollaries of this isomorphism conjecture. The injectivity is related through the
work of G.G. Kasparov and A.S. Miscenko to the Novikov higher signature
problem. We show how this problem leads to a conjecture on the invariance of
certain foliation characteristic classes under leaf-wise homotopy equivalence.
The surjectivity is related to a number of well-known C*-algebra problems,
such as the non-existence of idempotents in the reduced C*-algebra of any
torsion-free discrete group.

2. LIE GROUP ACTIONS

G denotes a Lie group and X denotes a C°°-manifold without boundary.
Both G and X are assumed to be Hausdorff and second countable. G and
X may have countably many connected components. G may be a countable
discrete group.

DEFINITION 1. A C® (right) action X X G — X of G on X is proper if
the map X X G — X x X given by

(x, 9) — (x,xg)

is proper(i.e. the inverse image of any compact set is compact).

TERMINOLOGY. A G-manifold is a C°°-manifold with a given (right)
C®® G-action. If X,Y are G-manifolds a G-map from X to Y is a C*
G-equivariant map f: X — Y. A G-manifold X is proper if the action of
G on X is proper. A subset A of a proper G-manifold is G-compact if
the image of A in the quotient space X/G is compact. A G-vector bundle
on a G-manifold X is a C*-vector bundle £ on X such that E is itself a
G -manifold, the projection E — X is a G-map, and for each (x,9) e X X G
the map E, — E,, given by

u— ug (u € Ey)

i1s linear.
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A G-vector bundle with G-compact support on a proper G-manifold X is
a triple (Eo, E1,0) where Eg, E; are G-vector bundles on X, o: Ey — Ej 1S
a G-map which is linear on each fibre and Support(c) is G-compact, where

Support (¢) = {x € X | o: Eoy — Ejy, is not an isomorphism} .

For a G-manifold X, the analytic K-theory is the K-theory of the reduced
crossed-product C*-algebra Co(X) x G. Here Co(X) is the C*-algebra of all
continuous complex-valued functions on X vanishing at infinity. We now
proceed to define the geometric K-theory, denoted K*(X,G), and the natural
map

K'X,G) — K; [Co(X) x G] i=0,1).

In doing this the G-manifold X will be “approximated” by proper G-mani-
folds. Note that the action of G on X 1is nof required to be proper. Of special
interest is the case when X is a point. For this case Cy(-) X G = C*(G) where
C*(G) is the reduced C*-algebra of G.

Let Z be a proper G-manifold. V%(Z) denotes the collection of all complex
G-vector bundles (Ey,E;,0) on Z with G-compact support. A group K%(Z)
is defined by imposing on V%(Z) the same equivalence relation used by
Atiyah-Segal ([5], [31])

K&(2) = Ve(2)/~ .

Addition in K2(Z) is given by direct sum £ @ ¢ of G-vector bundles with
G -compact support.

To define K;(Z) let G act on Z x R by:
@,0 g9 = (pg,?)
(p€Z, teR, geG). Set V5(Z) = VeZ x R). Then
K6(Z) = KG(Z x R).
The basic properties of Kj;(Z) are stated and proved almost exactly as Atiyah-
Segal did for compact G.
THOM ISOMORPHISM THEOREM. On the proper G-manifold Z let E be

an R G-vector bundle with a given G-invariant Spin‘-structure. Then

Ki(Z) = K5(E).

REMARK 2. The group K;(Z) is defined and used only for proper
G-manifolds Z.
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DEFINITION 3. Let X be a G-manifold. A K-cocycle for (X, G) is a triple
(Z,&,f) such that

(1) Z is a proper G-manifold;
(2) f: Z— X is a G-map;
3) (e V(T Zf'T*X) .

T*Z is the cotangent bundle of Z and f*7T*X is the pull-back to Z via f of
T*X.In (Z,&,f) all structures are C*° and G-equivariant.

The main result of this section is the construction of a canonical map p
from K-cocycles to the K-theory of the reduced crossed-product C*-algebra

Co(X) 1 G.

THEOREM 4. Each K-cocycle for (X, G) canonically determines an element
in K, [Cy(X) x G].

Outline of proof. First assume that f: Z — X is a submersion of Z
onto X. Let 7 be the cotangent bundle along the fibres of f. Using the
Thom isomorphism theorem £ € VE(T7Z @ f*T*X) determines an element
n € V&(1). For x € X, set Z, = f~!(x). Then n € VE(7) restricts to give
1, € V¥(T*Z,), which is the symbol of an elliptic operator on Z,. Hence 7
is the symbol of a G-equivariant family D of elliptic operators, parametrized
by the points of X. The K-theory index of D is the desired element of
K.[Co(X) % G] :

Index(D) € K, [Cy(X) % G].

If f: Z — X is not a submersion, then form the commutative diagram
XxXZ
oLe

Z — X
f

where i(z) = (fz,2) and p(x,z) = x. Using the Thom isomorphism theorem,
£ € VE(T*Z @ f*T*X) determines ¢ e VE(T*(X x Z) ® p*T*X). The desired
element of K,[Cy(X) x G] is then obtained as above from (X x Z, ¢, p). 0O

NOTATION. With D as in the proof of Theorem 4, Index(D) € K.[Co(X) % G]
will be denoted wu(Z,&,f). Observe that u(Z,&,f) is the analytic index of the
K-cocycle (Z,&,f). For & € VE(T*Z & f*T*X), one has

wZ,&.f) € KlGX) x Gl (=0,1).
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Suppose given a commutative diagram

Z 1 —}i-—-) Zz

AN\ Y
X

where Z;, Z,, X are G-manifolds with Z;, Z, proper and fi, f2, h are
G-maps. Using the Thom isomorphism theorem there is then a Gysin map

h: KA(T*Z) @ ffT*X) — KT Z, @ 5,T*X)  (1=0,1).

Just as for the ordinary analytic index of an elliptic operator on a G-manifold
(with G compact) [6], the main property of the index 4 is its invariance with
respect to push-forward:

THEOREM 5. The index map 1 is compatible with Gysin maps in the
following sense. If & € Vi(T*ZfT*X), then (Zy,&1,/1) = 2z, hi(&1),/2)-

REMARK 6. Theorems 4 and 5 indicate how to define the geometric
K-theory K*(X,G) and the natural map

i KX, G) — Ki[Co(X) % G].

For a G-manifold X, let I'(X,G) be the collection of all K-cocycles
(Z,¢,f) for (X,G). On I'(X,G) impose the equivalence relation ~, where
(Z,&,f) ~(Z',¢&,f) if and only if there exists a commutative diagram

Z ___}1_) Z// L Z/
N L S

X
with h(€) = K(€).

DEFINITION 7. K*(X,G)=TX,G)/~.

The equivalence relation ~ could also be defined as the equivalence relation
generated by three elementary steps :

(1) cobordism;
(2) vector bundle modification;

(3) direct sum — disjoint union.
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Addition in K*(X,G) is given by disjoint union of K-cocycles. Further,
K'X,6) =K'X,0) 8 K'(X,5),

where K'(X,G) is the subgroup of K*(X,G) determined by all K-cocycles
(Z,€,f) with &€ € Vo(T*Z & f*T*X). The natural homomorphism of abelian
groups
K'(X,G) = K;[Co(X) % G]
is defined by
(Z,8,f) — wZ,&,1) .

CONJECTURE. For any G-manifold X, nu: K'(X,G) — K;[Co(X) x G] is
an isomorphism.

This conjecture is known to be true if X is a proper G-manifold. If X is
proper there is a commutative diagram

K*(X,G) —— K.[Co(X) » G]
AN /@
K&(X)
in which each arrow is an isomorphism. i;: K*(X,G) — K3(X) maps a
K-cocycle (Z,&,f) to its topological index, and o o u: K*(X,G) — Ki(X)
maps a K-cocycle (Z,&,f) to its analytic index. If G is compact then any

G-manifold is proper and commutativity of the diagram is equivalent to the
Atiyah-Singer index theorems of [6], [7], [8].

3. HOMOTOPY QUOTIENT

Let W be a topological space. VO(W) denotes the collection of all complex
vector bundles (Eg,E{,0) on W with compact support. Thus Ey, E; are
complex vector bundles on W and o: Ey — E; is a morphism of complex
vector bundles with Support (o) compact, where

Support (o) = {p € W | o: Eg, — Ej, is not an isomorphism} .

Also V(W) = VO(W x R).
Suppose given an R-vector bundle F on W. Following [9], a twisted by F
K-cycle on W is a triple (M, €, ¢) such that:
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(1) M is a C°°-manifold without boundary;
(2) ¢: M — W is a continuous map from M to W;
3) £ € V¥(T*M & ¢*F) .

As in [9] an equivalence relation is imposed on these twisted by F K-cycles
to obtain the twisted by F K-homology of W :

KE(W) = K5 (W) @ Ki (W)

Kf (W) is the subgroup determined by all (M, &, ¢) with £ € V(T*M®p*F). If
F has a Spin°-structure then KE(W) is isomorphic to K.(W), the K-homology
of W.

With G as in §2 above, let EG be a contractible space on which G acts

freely
EG X G — EG.

Given a G-manifold X, let G act on EG X X by

(r,©) g9 = (pg,xg9)

(p € EG, x € X, g € G). The quotient space [EG x X]/G will be referred to
as the homotopy quotient. Since 7*X is a G-vector bundle on X, the quotient
[EG x T*X]/G is a vector bundle on [EG x X]/G. Denote this vector bundle
by 7 and consider the twisted by 7 K-homology KI([EG x X]/G). There is
a map

KI([EG x X]/G) — K*(X,G).

This map is not quite canonical. First an orientation must be chosen for the
Lie algebra of G, so assume that such an orientation has been chosen.

Let (M,¢, ¢) be a twisted by 7 K-cycle on [EG x X]/G. Now EG x X is
the total space of a principal G-bundle over [EG x X]/G and this principal
bundle can be pulled back via ¢ to yield a principal bundle Z over M

EGxX 2

l K

[EG X X] «—— M.
¢

Let m: EG x X — X be the projection and set f = 7 og,
f1Z—-X.

£ VY (T*Ma ¢*1) lifts to give Ee Ve(p*T*M & f*T*X). Denote the bundle
along the fibres of p: Z — M by F. This is a trivial vector bundle since,
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for each z € Z, F, is canonically isomorphic to the Lie algebra of G. Using
the orientation of this Lie algebra, F has a G-invariant Spin‘-structure so
that £ € V5(p*T*"M @ f*T*X) determines 1 € VE(F @ p*T*"M ©f*T*X). Now
F&p*T*M =T*Z, so (Z,n,f) is a K-cocycle for (X,G). The map

KI([EG x X]/G) — K*(X,G)
iS:
(M, &, ) — (Z,n,f).

This map has a dimension-shift in it. Set € = dim (G). Then with addition of
indices mod 2 this map takes K7 ([EG x X]1/G) to K'*¢(X,G).

LEMMA 1. If G is torsion free then K[([EG X X]/G) — K*(X,G) is an
isomorphism.

Proof. Let (Z,£,f) be a K-cocycle for (X, G). The action of G on Z is
proper, so each isotropy group is compact. Since G is assumed to be torsion
free this implies that the action of G on Z is free. Hence Z is a G-principal
bundle over G/Z, and thus Z maps equivariantly to EG. Combining this with
f:Z — X we obtain a commutative diagram

EGxX +—— Z

l &

[EG x X] «——— Z/G.

Denote the map of Z/G to [EG x X]/G by ¢. Then £ € VI(T*Z & f*T*X)
determines ¢’ € Vi(p*T*(Z/G) @ f*T*X). Since the action of G on Z is free
&' descends to give 8 € V*(T*(Z/G) @ 7). Then

(Z,¢,/) — (Z/G,0,9)

maps K*(X,G) to K[([EG x X]/G) and provides an inverse to the map
KI([EG x X]/G) — K*X,G). [

REMARK 2. If G is the trivial one-element group then the isomorphism
of the lemma becomes
KTX(X) =2 K*(X).

If X is a Spin“-manifold then KI*X(X) = K.(X), so that in this case
the isomorphism of the lemma becomes the Poincaré duality isomorphism
K.(X) =2 K*(X).
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When G has torsion, the map KI([EG x X]/G) — K*(X,G) can fail to
be an isomorphism. The simplest example of this is obtained by taking X to
be a point and G = Z/2Z.

When G has torsion, K7([EG x X]/G) appears to be only a first
approximation to K*(X,G) and K.[Co(X) G]. The key point is that when
G has torsion, there will be proper G-manifolds on which the G-action 1S
not free.

4. SOLVABLE SIMPLY CONNECTED LIE GROUPS

The conjecture stated in §2 above is verified for (connected) solvable
simply connected Lie groups by

PROPOSITION 1. Let G be a (connected) solvable simply connected Lie
group, and let X be a G-manifold. Then there is a commutative diagram

K*(X,6) —5— K.[Co(X) x G]

1 l

K*X) ——  K[Co(X)]

in which each arrow is an isomorphism.
The proof depends on

LEMMA 2. Let G be a (connected) solvable simply connected Lie group,
and let Z be a proper G-manifold. Then there exists a G-map from Z to G.

Proof of Lemma 2. Since the action of G on Z is proper all isotropy
groups are compact. G has no non-trivial compact subgroups, so the action
of G on Z is free. Therefore Z is a principal G-bundle with base Z/G. As

G is itself a contractible space on which G acts freely, there is a G-map
from Z to G. O

Proof of Proposition 1. In the diagram of the proposition the right vertical
arrow is the Thom isomorphism of [13]. The lower horizontal arrow is

the standard isomorphism which is valid for any locally compact Hausdorff
topological space.
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To define the left vertical arrow the first step is to use the lemma to
construct an isomorphism

(1) K*(X,G) = Ki(T* [ X x G1® 7 T*X) .
Here G acts on X x G by

(x,91) 9 = (x9,919)

and 7;: X X G — X is the projection.

If (Z,¢,f) is a K-cocycle for (X, G) then according to the lemma there
exists a G-map ¥:Z — G. Define h: Z — X x G by h(z) = (fz,%z) so that
there is the evident commutative diagram

7z ", xxaG

f\, /WI
X

The i1somorphism (1) is

(Z,8,) = m(©).
Next, T*[X x G] @ n{T*X has a G-invariant Spin“-structure so by the Thom
isomorphism theorem of §2, there is an isomorphism

(2) KT X x Gl mT*X) 2 KX x G).

Finally, the action of G on X x G is free and has [X x G]/G = X. This
yields an isomorphism

3) KL(X x G) 2 K*(X) .

Composing (1), (2), (3) gives the left vertical arrow of the proposition.  []

REMARK 3. The two vertical arrows in the diagram of the proposition are
not quite canonical. First an orientation must be chosen for the Lie algebra
of G. There is no dimension shift in the horizontal arrows of the proposition.
If € = dim(G), then the left vertical arrow maps K'(X,G) to K't¢(X), and
the right vertical arrow maps K;[Co(X) % G] to K1 [Co(X)].
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5. THE GEOMETRIC K-THEORY FOR 7y FINITE

In this section we shall determine the geometric group K*(X, G) whenever
G has only a finite number of connected components. The main point is the
existence of a final object (namely H\G, where H is the maximal compact
subgroup of G) in the category of proper G-manifolds.

Throughout this section G is a Lie group with a finite number of connected
components. H denotes the maximal compact subgroup of G. And g, h are
the Lie algebras

0—h—g—h\g—0.

Passing to dual spaces (over R):

0" g* — (h\g)" 0.
- By the co-adjoint representation H acts on (h\g)*

(h\@)* x H — (h\g)* .
Given a G-manifold X, let H act on X x (h\g)* by
(x,u) h = (xh, uh)
(xeX, ue(h\g)*, h€H).
PROPOSITION 1. For any G-manifold X there is a canonical isomorphism

of abelian groups

KL(X x (h\g)") — K'(X,G)  (=0,1).

REMARK 2. The isomorphism of the proposition is completely canonical
and has no shift of dimension.

COROLLARY 3. Set € = dim(h\g). If the co-adjoint action of H on (h\g)*
is Spin°, then
KL(X) =2 KX, G).

Proof of Corollary 3. 1f the action of H on (h\g)* is Spin‘, then the
Thom isomorphism [1] applies to give an isomorphism

Ki(X) — K (X x (h\g)").

Composing this with the isomorphism of Proposition 1 proves the corollary. []
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REMARK 4. Set H\G = {Hg | g € G}. There is the evident (right) action
of G on H\G

(H\G) x G — H\G.
The action of H on (h\g)* is Spin® if and only if H\G admits a G-invariant
Spin®-structure.

To analyze the case when the action of H on (h\g)* is not Spin®, fix
an H-invariant Euclidean structure on (h\g)*. Proceed as in [15]. Since
H is connected, the co-adjoint representation maps H into SO(h\g)*. Let
Spin(h\g)* be the non-trivial 2-fold covering of SO(h\g)* and form the
commutative diagram N

H —— Spin(h\g)*

l l

H —— SO(h\g)*

where H = H X sob\ g+ Spin(h\g)* is the 2-fold covering of H obtained by
pulling-back the Spin covering of SO(h\g)*. There is then ([1]) the Thom
isomorphism

KL — KX % (5\9)").

Moreover, let u € H be the non-identity element of H which maps to the
identity element of H by the projection H — H. If E is any H -vector bundle
on X, there is the direct sum decomposition

E=E, ®E_

where E4 = {v € E | vu = +wv}. This leads to a direct sum decomposition
of KH* X) :

TN i
00~ sn], o 500]_
where {Ké (X)] , is obtained by only using E. . Note that [Kfil (X)] =~ KL(X).
+
COROLLARY 5. For any G-manifold X, there is an isomorphism of abelian

groups
[K;,oo} - KX, G),

i=0,1, e =dim(h\g).

Proof. The Thom isomorphism
KL(X) — KX x (5\)")
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gives an isomorphism
K00| — KX x (5\a)").

Combining this with the isomorphism of Proposition 1 proves Corollary 5. [
The essential point in the proof of Proposition 1 is given by

LEMMA 6. Let Z be any proper G-manifold. Then there exists a G-map
from Z to H\G.

Proof. Assume for simplicity that H\G admits a G-invariant Riemannian
metric of non-positive curvature. This is the case if G is semi-simple [17].

It follows easily from the slice theorem of Palais [23] that Z can be covered
by open sets Uy, Uy, U, ... such that each U; is mapped into itself by G,
{U;} is a locally finite cover of Z, and there exist G-maps f;: U; — H\G.
Two points in H\G are joined by a unique geodesic. Let ¢o: Uy UU; — R,
¢1: UpUU; — R be a C* partition of unity on Uy U U; subordinate to the
covering Uy, U; and with each ¢; constant on orbits. Then ¢ofy + ¢1f; is
a G-map from Uy U U; to H\G where (Pofp + ¢1f1) means the weighted
average (by weights ¢o(x), ¢1(x)) of fo(x),fi(x) along the unique geodesic
joining fo(x) and f;(x). Iterating this construction produces the desired G-map
from Z to H\G.

The general case has been proved by A. Borel [10]. [

Proof of Proposition 1. Let (Z,&,f) be a K-cocycle for (X, G). According
to Lemma 6 there is a G-map 0: Z — H\G. Let h: Z — X x (H\G) be

h(z) = (fz,6z).
Form the evident commutative diagram

z s XxH\G)

£\ .
X

where m: X x (H\G) — X is the projection.
Define an isomorphism

(1) K'(X,G) — K5(T*[X x H\G] & 7*T*X)

(Z,6,) = h(§).
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Now T*[X x H\G] @ m*T*X = ©*T*X & n*T*X @ p*T*(H\G), where
p: X x H\G — H\G is the projection. 7*T*X @ n*T*X has a G-invariant
Spin‘-structure. Hence the Thom isomorphism theorem applies to give an
isomorphism

2) KL(T*[X x H\G] ® m*T*X) — KL(p*T*(H\G)).
Next, there is the identification
[X x (h\g)"] xu G = p*T*(H\G).
This identification gives an induction isomorphism
3) Ky[X x (h\g)*] — KG(p*T*(H\G)) -

Starting with an H-vector bundle £ on X X (h\g)* the induction isomorphism
takes E to E Xy G. Combining the isomorphisms (1), (2), (3) proves the
proposition. [

REMARK 7. Of special interest is the case when X is a point. By the
above proposition

K(-,G) = R(H)_
K'™¢(.,G)=0.

Here ¢ = dim(h\g) and R(ﬁ)_ == Kg(-)_ is the free abelian group with

one generator for each irreducible representation of H which is not a
representation of H. If the action of H on (h\g)* is Spin, then there is
an identification R(ﬁ)_ = R(H). The second-named author (A. Connes) and
independently G. G. Kasparov [20] have conjectured that Dirac induction gives
an isomorphism

K.J[C*G) = R(H)_
Ki+[C*G]1 =0.

For connected complex semi-simple groups M. Pennington and R. Plymen
[25], [28], have verified this conjecture. These results of M. Pennington
and R. Plymen combined with the proposition of this section verify the
isomorphism conjecture stated in §2 above in a number of interesting cases.
Note that (due to the proposition of this section) the Connes-Kasparov
conjecture on K,C*G is a special case of the isomorphism conjecture of §2.
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Let G be a connected semi-simple Lie group with finite center. The lemma
of this section elucidates the role of H\G in the Atiyah-Schmid geometric
construction of the discrete series [4]. Atiyah and Schmid obtain the discrete
series representations by using the Dirac operator on H\G. As noted in
the introduction Ko[C*G] contains a free abelian group with one generator
for each (irreducible) discrete series representation. By the lemma, however,
all of K*(-,G) is obtained from H\G. If (as conjectured in §2 above)
K*(-,G) & K.(C*G), then not only the discrete series, but all of K.(C*G)
can be obtained from H\G.

At this juncture one might ask, “Why not simply define K'(X,G) =
K4(X) ?” We believe that there are compelling reasons for not doing this. First,
this misses the dimension-shift by € = dim (H\G). Second, this overlooks the
issue of whether or not the action of H on (h\g)* is Spin°. Third, this
greatly obscures the relation of K-theory to index theory. Finally, in the case
of discrete groups and foliations there is no maximal compact subgroup so
that if this were done there would be no unified theory for Lie groups, discrete
groups, and foliations.

6. DISCRETE GROUPS: CHERN CHARACTER

In this section G is a discrete group which is either finite or countable
infinite. For a G-manifold X, X*(X,G) was defined in §2 above. As in §3
there is the natural map

K ([EG x X]1/G) — K*(X, G),

where 7 = [EG x T*X]/G.

PROPOSITION 1. Let G be a discrete group and X a G-manifold. Then
KI(EG x X]/G) ®2Q — K*(X,G) ®2 Q
IS injective.
REMARK 2. When X is a point, Proposition 1 asserts that

K.BG)®z2Q — K*(-,G) ®2 Q

1S injective.
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The proposition is proved by defining the Chern character. This is a natural
map

K*(X,G) — HI([EG x X1/G;C).

Here H([EG x X]/G;C) denotes the homology (with coefficients the complex
numbers C) of the pair (BT, S7) where B7, ST are the unit ball and unit sphere
bundles of 7 with respect to any continuous Euclidean structure chosen for 7

H.([EG x X]/G;C) = H.((BT,87),C).

The Chern character can be defined by the following five-step procedure,
which is similar to a procedure used by M.F. Atiyah [2].

Step 1. Let (Z,€,f) be a K-cocycle for (X,G). Form the commutative
diagram

zZ ", xxz

N\ ™
X

where h(z) = (fz,2) and m(x,2) = x. Consider A(§) € KET*X x Z) ®
miT*X). Now T*(X x Z) = 7m{T*X @ m;T*Z where m(x,z) = z. Since
mi T*X @ 7fT*X has a G-invariant Spin‘-structure, the Thom isomorphism
theorem gives an isomorphism

K5(T*(X X Z) ® miT*X) 2 Ki(miT*Z) .

Via this isomorphism % (§) determines ¢ € Ki(m;T*Z). Using G-invariant
connections and the Chern-Weil curvature theory of characteristic classes, let
w be the differential form on X x T*Z = m, T*Z which represents the Atiyah-
Singer answer for the index of a family of elliptic operators [7]. Thus w is a
G -invariant closed differential form with G-compact support which represents
ch(¢") U} Td(C ®r T*Z). Here ch is the usual Chern character and Td is
the Todd polynomial.

Step 2. The action of G on X X T*Z = w5 T*Z is proper. This implies that
the quotient space 73 T*Z/G is a rational homology manifold. The differential
form w of Step 1 is closed, G-invariant and has G-compact support. Hence
w descends to determine a cohomology class w, with compact support, on
w5 T*Z/G

w € HX(myT*Z/G;C).
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Step 3. On X x Z choose a G-invariant Euclidean structure for 77 T*X and
let BmiT*X, StiT*X be the unit ball and unit sphere bundles. The rational
homology manifold T*(X x Z)/G is oriented. This gives a Poincaré duality
isomorphism

HX(m3T*Z/G;C) 2 H (BT T*X/G, 87 T*X/G); C).
Using this isomorphism, w € H}(73T*Z/G;C) determines
Dual(w) € H,(Br{T*X/G,SmT*X/G);C).

Step 4. On [EG x X x Z]/G let T be the vector bundle [EG x mT*X]/G.
Consider the evident map

T =[EGx mT*X]1/G — m{T*X/G .

A typical fibre of this map is of the form BI' where I' is an isotropy group
for the action of G on 7;T*X. Since this action is proper, I' is a finite group
and H;(BI';Q) =0 for i > 0. Hence the map

T—-mTX/G
is an isomorphism in rational homology. This gives an isomorphism:
H.((BT,87);C) 2 H ((Bn{T*X/G,St{T*X/G); C).

By this isomorphism Dual (w) € H (Bm{T*X/G, S T*X/G); C) determines
w € H.((BT,57); C).

Step 5. The projection 7 = [EG x T*X x Z]/G — [EG x T*X]/G = T
induces a map of homology

H.((BT,57);C) — H.((BT,57);C).

The image of w under this map is, by definition, the Chern character of the
original K-cocycle (Z,&,f). '

Proof of Proposition 1. The following diagram is commutative
KI([EG x X]/G) ——— K*(X,G)
g /
HT([EG x X1/G; C)

where the left vertical arrow is the usual K-homology Chern character [9].
Since the usual K-homology Chern character is rationally injective, this forces
the horizontal arrow to be rationally injective. [
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REMARK 3. For G discrete the reduced C*-algebra of G, denoted C*G,

comes equipped with a trace. An element in C*G is a formal sum ) A, g
g€iG
where A\, € C. The trace of such an element is A; where 1 is the identity

element of G. This trace then induces a map
tr: Ko C*'G — R.

Let Z be a proper G-manifold and let D be a G-invariant elliptic operator
on Z.If ¢ is the symbol of D then (Z,€) is a K-cocycle for (-,G) and the
Chern character defined above assigns to (Z, &)

ch(Z,¢) € H.(BG;C).

Let €: BG — - be the map of BG to a point. Identify H.(-,C) = C and
consider

ex.ch(Z,&) e C.
The K-theory index of the elliptic operator D is an element of Ko C*G
Index(D) € Ko C*G.
We then have the following formula for tr[Index(D)] :
tr[Index(D)] = €, ch(Z, £).

For the special case when the action of G on Z is free this formula was
obtained by M.E. Atiyah [3].

7. COROLLARIES OF THE ISOMORPHISM CONJECTURE

The conjecture stated in §2 above asserts that
p: K*(X,G) — K. [Co(X) x G]

is an isomorphism. Suppose that G is a discrete group and X is a point. The
conjecture then asserts that p: K*(-,G) — K.C*G is an isomorphism where
C*G is the reduced C*-algebra of G. Throughout this section G will be a
discrete group and we shall consider some corollaries of the conjecture that
p: K%, G) — Ko C*G is an isomorphism. “Proof” will mean “Proof modulo
the conjecture”.
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COROLLARY 1. If G is torsion free then tr: Ko C*G — R maps Ko c*G
onto the integers 7.

“Proof”. Let (Z,€) be a K-cocycle for (-,G). Let D be a G -invariant
elliptic operator on Z whose symbol is £. By the definition of u: K%-,G) —
Ko C*G given in §2 above

w(Z, &) = Index(D) .

If G is torsion free then the action of G on Z must be free. Hence Atiyah’s
result applies [3] and tr{Index(D)] must be an integer. Thus the surjectivity
of u: K%-,G) — Ky C*G implies that tr: Ko C*G — R takes on only integer
values. [

COROLLARY 2. If G is torsion free then there are no non-trivial projections
in C*G.

“Proof”. A non-trivial projections in C*G would give an element
a € Ko C*G with 0 < tr(e) < 1.  [J

REMARK 3. For G torsion-free abelian, Corollary 2 can be proved by
applying Pontrjagin duality. At the other extreme, Pimsner and Voiculescu
[27] have proved that Corollary 2 is valid for a finitely generated free group.

In the statement of Corollary 2 it is essential that C*G be the reduced
C*-algebra of G. Corollary 2 is not valid if one uses the maximal C*-algebra
Crnax G -

A classical conjecture [24] in the theory of group rings is that the group
ring of a torsion-free group has no (non-trivial) divisors of zero. J. Cohen
has observed that Corollaries 1 and 2 may be relevant to this. zero-divisor
conjecture.

If G has torsion then we conjecture that tr: Ko C*G — R maps Kg C*G
onto the additive subgroup of Q generated by all rational numbers of the
form % where n is the order of a finite subgroup of G. This would follow
from the conjectured surjectivity of K°(-,G) — Ky, C*G plus the unproved
assertion that tr[Index(D)] can only take on such values, where D is any
G -invariant elliptic operator on a proper G -manifold.

COROLLARY 4. The Novikov conjecture on homotopy invariance of higher
signatures [11].

“Proof”. Let M be a closed oriented C*°-manifold, G = 7;(M) and let
f:M — BG be the classifying map of the universal covering space of M.

[ VU
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The Novikov conjecture is that
(L(M) U f*(a), [M])

1s an invariant of oriented homotopy type, where L(M) is the total L class
of TM and a is any element in H*(BG; Q).
Kasparov [19] and Miscenko-Fomenko [21] [22] define a map

Ko(BG) — Ko C*G

and prove that the Novikov conjecture is implied by its rational injectivity.
This enabled them to prove the Novikov conjecture for any discrete subgroup
of a linear Lie group. The relation with our conjecture is clear from the
following commutative diagram

Ko(BG) —— Ko C*G

N\ /

and the Proposition of § 6 above. (In this factorization, the topological definition
of K-homology given in [9] is being used.) []

COROLLARY 5. (Stable) Riemannian geometry conjectures of Gromov-
Lawson-Rosenberg [30].

For the same reason our conjecture implies the stable!) form of the
Riemannian geometry conjectures of Gromov-Lawson-Rosenberg [30] on
topological obstructions to the existence of metrics of positive scalar curvature.

8. TWISTING BY A 2-COCYCLE

This section is motivated by the papers [16], [26], [29], on the range of the
trace for the C*-algebra of the projective regular representation of a discrete
group.

All of §2 adapts to the projective situation where together with the
G-manifold X one is given a 2-cocycle v € Z*(X x G, S*). For simplicity we

1) Paul Baum comments: It is important to emphasize “stable” because Thomas Schick has
shown that the original unstable Gromov-Lawson-Rosenberg conjecture is false. On the other hand,
Stephan Stolz (with contributions from J Rosenberg and others) has proved that the real form
of Baum-Connes implies the stable Gromov-Lawson-Rosenberg conjecture Also, Max Karoubi
and I have proved that the usual (ie complex K-theory) form of Baum-Connes implies the real
form of Baum-Connes
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shall stick to the case X = pt = - and G discrete =1I"; then v € 72T, SH
is amap: I' x ' — §' such that:

(g2, 93) (9192, 93) " ¥(g1, 9293) ¥(g1, 92) ' =1 for every g1,92,93 €T

Given a proper I'-manifold Z, a (I',7)-vector bundle on Z is a smooth
(complex) vector bundle E on Z together with a smooth map E X I' - E
such that (with 7: E — Z the projection):

a) m(&g) =m(€)g foreach € E, g€}
b) £(9192) = (91, 92) (€g1)g2 for each g1,9, €T

In b), ¥(g1,g2) € S' is viewed as a complex number of modulus 1. As in
§2, we let V?F,W)(Z) be the collection of triples (Ey, Ej,0) where Ey, E; are
(", 7)-vector bundles over Z and o is a smooth morphism of vector bundles
such that:

1) o(§g) =0(&)g for each £ € Ey, g€ T';
2) Support (o) is I'-compact.

The groups KéFm(Z) are then defined as in [5], [31]. The Thom isomorphism
as formulated in §2 still holds in this context, and this allows us to define
Gysin maps:

h': Kip (T*Zy) — Kip (T 2Z,)

for a I'-map h of the proper I'-manifold Z; to the proper I'-manifold Z,.
Thus as in §2 we can define the geometric group also in this twisted
situation, we denote it by KJ(X,G) in general, and = K7(-,I') in our special
case.
Let then C;(I',7y) be the reduced C*-algebra of the pair (I',7), i.e. the
C*-algebra generated in £*(T") by the projective regular representation A of I":

A @) =997 9)€g ' ).

As in §2 we get a map u from KX (pt,I') to K (C7(T',v)), where u(Z,§) is
the analytical index of the K-cocycle (Z,§) € V(*F, 7)(T*Z). The only part of the
construction which is modified by the presence of ~ is that of the C*-module
over C7(I',~y) attached to a (', y)-bundle E on the proper I'-manifold Z. More
precisely, one starts with the space C.(Z,E ® Q/?) of compactly supported

. 1 . . . . . .
continuous 7 -density sections of E and, after choosing a I'-invariant metric
on E, one defines:

<£777> (Q) = f <£xa (nxg) 9_1> for each g c F,
X
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which gives a C.(I')-valued sesquilinear form on C.(Z, E®Q!/?). One checks
that for any & € C.(Z, E® Q!/?), (£,€) is a positive element of C*(I), since
for any n € (") one has:

(mAUEENT) =D 7(g) (£,€) B A7) (9)
= 0 9T N ) [ (8 i)

=S @t g) /X (Eeg—1) 9, € h 1 g) > 0.

Then, by completion with respect to the norm |(&,¢ )Hl/ >, one gets a
C*-module over C¥(T',~), which we denote by L?(Z,E). The right action
i1s given by:

(&) () =D (Eug-1)9f(g) for each £ € C(Z, E®QY?), f € CT).
r

Next, we can choose a I'-invariant Riemannian metric on Z, represent every
class in K?rm(T*Z) by a pair Ey,E; of (I',)-hermitian bundles on Z and
a symbol o which is an isomorphism of the pull back of Ey to $*Z to that
of E;, and is independent of ¢, w(§) = z, outside a I'-compact subset of Z.
Letting P, be the corresponding order O pseudo-differential operator, one gets a
Kasparov (C, C¥(T',v))-bimodule: the triple (L*(Z, Ey), L*(Z,E1), P,) which
gives an element of Ko(C;(I',~y)). It is important to give another description
of the map u: K?r, (T*Z) — Ko(C3(T', 7)), using Kasparov products.

PROPOSITION 1. a) Let X be a proper I'-manifold, then Kérm(X) LS
canonically isomorphic to Ki(Co(X) x I'), where Co(X) I is the twisted
crossed product of Co(X) by T'.

b) (Compare [19]). For any C*-algebras A,B on which T" acts by
automorphisms, one has a natural map from KKr(A,B) to KK(Ax,T',Bx,I').

Proof. a) One can consider A = Cy(X) x, I' as the C*-algebra of the
groupoid X xI" = G with units G® = X, source and range maps s(x, g) = xg,
r(x,g) = x and composition (x, g)-(x’,¢’) = (x,gg") with the 2-cocycle yo
where 7 is the natural homomorphism G — I': 7w(x,g9) = g.

Thus A is the completion of this convolution algebra C.(G) :

(£ G, g) =Y file,h) oGk, ™" g)y(h, k™" g)
r

e, 9) = flxg, 97"
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with the norm ||f|| = Sup ||7<(f)||, where for each x € X the representation
7, of C.(G) in £4(I) is given by:

(T (DO () =Y flxg™ W ERT" g)y(h, k™ g) for each € € £A(I) .
r

Now, given a (I',¥)-vector bundle E on X, one can endow E with a
-invariant hermitian metric and define a C*-module € over A = Co(X) x4 T’
as follows. For any &, € C«X,E) let (£,n) € Cc(X xT) be given by

(€,1m)(x,9) = (£x g, 7xg) 5 then (€,€) is a positive element of A = CoX) x~ T,
since for any 1 € (") and x € X one has:

<T}a Wx(<§a &)) 77) -
S5 (gt By Exg-r Y (R 9)Ti(g) v(h, BT g) = (e, ) 20,

where o = Z(gxg‘l)g n(g) € Ex.
Let £ be the completion of C.(X,E) with the norm ||| = ||(&,€)]] ; then
£ is a C*-module over A, with:

EH @ = flg™',9)&(xg g for every f € C.X x 1), € € Co(X,E) .

(One easily checks that (&,nf) = (€,n) = f and that this right action of
C.(X x T) extends to an action of A.)

The equality (7(7,€))(®) = 3 ((ig-1)9,Ex)(xg-1)g shows that any
endomorphism o of the vector bundle E which commutes with I" and has
I"-compact support defines an A-compact endomorphism of £ by the equality :
(T€) (x) = o(x) £(x) for every x € X. Thus, to any triple (Ey, E;,0) € V?I-m(X)
corresponds an element of KK(C,A), A = Cy(X) %, I', which obviously
depends only upon the class of the triple in K?r, »X). Let us prove that this
map is an isomorphism assuming that I' is forsion free. We may then assume
that X is I'-compact. We claim first that A = Co(X) %, I" is Morita equivalent
to a C*-algebra with unit. Indeed, with V = X/T", A is the C*-algebra of
the continuous field of elementary C*-algebras A4, = Co(7~1(¢)) x~ I', where
m: X — X/I' =V is the projection. By a simple computation, one gets that
the Dixmier-Douady obstruction §(A) € H3(V,Z) is given by §(4) = ¢*(0)
where ¢: V — BT is the classifying map, and 8y € H*(BT', Z) is the boundary
of v € H*(BT,S') = H*(T',S") in the exact sequence:

HYT,Z) — HXT,R) — HXT, 5" 2 H3(T,Z) — H3(T,R) — ...

In particular §(A) is a torsion element in H>(V,Z) so that there exists a
bundle of matrix algebras over V with the same Dixmier-Douady obstruction
and A is Morita equivalent to a unital C*-algebra. It follows then that Ky(A)
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is obtained from C*-modules £ over A with the property idg € End)(£), i.e.
all endomorphisms of £ are A-compact. Finally, the above construction sets
up a surjective map from (I',7y)-vector bundles on X to C*-modules over A
with the above property. Given &£, the fiber E, of the corresponding vector
bundle is:

E, = E£®, ()

where A = Co(X) x, I' acts in /(') by the representation 7. Since
mx(A) C Compacts, one gets that E, is a finite dimensional Hilbert space.

b) The proof is the same as in [19], one defines for any I'-equivariant
C*-module £ over B the crossed product £ x,I" twisted by the 2-cocycle y. [

We can now state:

THEOREM 2. For any element x of K?F’,Y)(T*Z) = Ko(A) (where

A = Cy(T*Z) », ', and Z a proper I'-manifold), one has :

W(x) = x ® jr,y) (D),
where D € KKr(Co(T*Z), C) is the class of the Dirac operator.

Note that x € KK(C, Co(T*Z) x,I') and that
JonD) € KK(Co(T*Z)) 1, T, CH(T, 7)) ,

so that the above equality is meaningful. The proof is straightforward.

To show how to use this theorem, we shall combine it with the recent result
of G. G. Kasparov ([19]) to compute K;(C;(I',7y)) in the following example : we
let I' = m(M) be the fundamental group of a Riemann surface M with genus
> 1. From the exact sequence 0 — H*(T',Z) — H*(T,R) — H*(I',S") — 0
one gets H*(I',S!) = R/Z, so that there are many non trivial cocycles in
this example. The geometric group Kfy(pt,l“) is easily determined: since the
universal cover M of M (the Poincaré disc) is a final object in the category
of proper I'-manifolds, and homotopy classes of I'-maps, it is enough to
compute Kérm(T*M). Since M has a I'-invariant Spin‘-structure, the Thom

isomorphism hence gives: K. (pt,T) = Kfr,y)(ﬁ)- By Proposition 1, one has
KEF,')/)(M) = Ki(Co(M) », T) and the latter C*-algebra is Morita equivalent to
C(M) (see the proof of a) in Proposition 1). Thus we get: K(pt,I') = Z?,
Kl(pt,T) = Z%9.




GEOMETRIC K-THEORY FOR LIE GROUPS AND FOLIATIONS 27

THEOREM 3. Let I' be the fundamental group of a Riemann surface of
genus > 1, and v € HXI, SY), then the map p: KX(pt,I') — K.(CF(T', 7)) is
an isomorphism.

Proof. Let D € KKs(Co(U),C) be the G = PSL(2,R) quivariant Dirac
operator on the Poincaré disc U = G/G, (cf. [19]). Identify M with U and
' with a subgroup of G. Then by Proposition 1b) and Theorem 2 it is
enough to show that the restriction of D to an element of KKr(Co(U),C)
is an invertible element. This follows from [19] which shows that D is an
invertible element of KKg(Co(U),C), and from the multiplicative property of
the restriction to subgroups.

We shall now show how to prove that the C*-algebras C;(I',y) are pairwise
non-isomorphic when «y varies in H*(T,S!). In fact we shall compute in full
generality the composition ¢ oy of the canonical trace ¢ on C;(I',y) (viewed
as a map from Ko to C) with the above map p: K9(pt,I') — Ko(CF(T', 7).

The computation is a generalization of the index theorem for covering
spaces of Atiyah ([3]).

LEMMA 4. Let Z be a proper I'-manifold and E a (I',7) vector bundle
on Z. There exists a I -invariant connection V on E.

Proof. For any (I',v)-vector bundle F on Z and section £ € C°(Z, F)
let, for g € ', g€ € CX(Z,F) be given by: (g€)(x) = (€(xg)) g~ ! € F, for
every x € Z.

In this way one gets a natural vy-action of I" on both C°(Z,E) and
.CP(Z,E® T*Z), and one looks for a connection

V:CP(Z,E) - CP(Z,EQT*Z)

such that V(g§) = g(V§) for every &. Let f € C°(Z), 0 < f < 1,
be such that ) f(xg) = 1 for every x € Z and V, be a connection
r

on E. Put V =3 g7 (fVy)g. By construction V is I'-invariant, moreover
T

each ¢g=!' Vg is a connection on E thus V is a connection on E. []

Proof of Theorem 3, continued. Assuming now that Z is I'-compact, let
for a I'-invariant connection V on E, wy be the canonical differential form
on Z which represents locally the Chern character ch(E). By construction
wy 1s I'-invariant and hence determines a cohomology class in Z/I". One
checks as usual that this class does not depend upon the choice of V and
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we shall denote it by [E] € H*(Z/T',R). This construction easily extends to
give a map ch from K?F,,y)(Z) to H*(Z/T,R) for any proper I"-manifold Z.
However, in the presence of the 2-cocycle  the range of this map is no
longer necessarily contained in H*(Z/T', Q).

To be more precise, let us make a few simplifying assumptions and compute
exactly the range of this Chern character :

ch: Ky ,(Z) — H*(Z/T,R).

Thus let us assume that I" is torsion free and that the image of v € H*(T, S%)
in H*([',Z) under the connecting map of the long exact sequence :

..— H*T',Z) —» H*T,R) —» H*I',$") - H3(T",Z) — . ..

is equal to O (it is always a torsion element).
Let then p € H*(I',R) be such that e(p) =y where e: R — S! is given
by e(s) = exp(2mis), for each s € R.

LEMMA 5. a) Let p € ZXI',R) and Z be a proper T'-manifold, then
there exists a smooth function ¢ € C*°(Z x T') such that:

c(x, g1) + c(xg1, g2) = c(x, 9192) — p(g1, 92)

for every x€Z, g1, € 1.

b) If v = e(p) there exists an isomorphism r: K2(Z) — K?F,'y)(z) making
the following diagram commutative :

KXZ) —— Ky, @

lch lch
H*(Z/T) —~— H*(Z/T),
where m is multiplication by the cohomology class exp(¢*p) and where
¢: Z/T" — BT is the classifying map.

Proof. a)Let M =Z/T", n: Z — M the projection. Since Z is a locally
trivial I"-principal bundle, it is easy to construct ¢ on the open set 7 !(U)
for U small enough. Then one combines such ¢y by a smooth partition of
unity on M :

c(x,9) = Y u(r()cylx,g).

b) Let ¢ € C°(Z «T") be as in a) and let us endow the trivial line bundle
on Z (with total space Z x C) with a structure of (I',y)-bundle. We take:
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(x, \)g = (xg, e(c(x, A) -

(One has ((x,\g1)g2 = (xg192, e(c(x, g1) + c(xg1,g2)N) = 7~ '(g1,92) (XH)
(9192) )

Let L be the (I',7)-line bundle on Z thus obtained. It is obvious that
tensoring by L gives an isomorphism of V?F)(Z) with V?r »Z and hence of
K2Z) with KI._,(Z). O

End of proof of Theorem 3. To conclude, it is emough to compute
ch(L). Let £ € C®(Z,L) be the section £(x) = 1 for every x € Z. Let
V be a I'-invariant connection on L, one has ch(L) = exp(w) where
w € H*(Z/T,R) corresponds to the I-invariant 2-form 6 = 5= d(V£/€) on
Z. let o= %r—l VE/E, then o is a 1-form on Z, and let us compute for any
g € T the difference o — (;S*a where ¢(x) = xg for every x € Z. Since V is
I"-invariant, one has ¢*a = 27” Vg(€)/9(€), and as g(&)(x) = e(c(xg, g 1)) £(x)
one gets ¢*a — a = dip,, where P, (x) = c(xg,g~ ") for every x € Z. One
has vg,09, — 1%g, — Vg, = (g5 l,gl— Y. This shows that the class of # in
H?*(Z/T',R) is the pull back of the class of —p in H*(BT', R), by the classifying
map: Z/T'— BI'. [

Using this map ch: Ky ,(Z) — H*(Z/T,R) we get, by the same five
steps as in §6, a map

- ch
Kx(pt,I) = H,(BT,R).

Again as in §6, let € be the map from BI to a point, and trr be the canonical
trace on C;(I', 7).

THEOREM 6. For any discrete group T' and 2-cocycle v the following
diagram is commutative :

Kopt,I) —— Ko(C*(T,7))

Jo |

*

H.BI,R) — C.

The proof is a simple adaptation of the heat equation method to compute
the I'-index of the (I",)-Dirac operator on a I'-manifold Z.
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COROLLARY 7. If v = e(p), for some p € HXI,R), then the subgroup
of R, A =trr(Ko(Cr(T',7))) contains the group:

(ch K. (BT'), exp(p)) .
This follows from Theorem 6 and Lemma 5b).

Moreover, when the map p is an isomorphism, one can conclude that
A = (chK.(BI'),exp(p)). Thus using Theorem 3 we get:

COROLLARY 8. Let I' be the fundamental group of a compact Riemann
surface of positive genus, v € HXI',S') be a 2-cocycle and 8 € R/Z the
class of v in H*T,R)/H*(T',Z) = R/Z. Then the image of Ko(C}(,~)) by
the canonical trace ¢ = Trr is equal to the subgroup Z + 6Z C R.

Since, for g > 1, the trace trr is the unique normalized trace on
Cr(I',7) (for any value of ), one gets that the corresponding C*-algebras
are isomorphic only when the I'’s are the same (using K;j) and when the ~’s
are equal or opposite (in H*(T,S')).

9. FOLIATIONS

Let V be a C*°-manifold, and let F be a C°°-foliation of V. Thus F is
a C°°-integrable sub-vector bundle of 7V. As in [33] let G be the holonomy
groupoid (graph) of (V,F). The manifold V is assumed to be Hausdorff
and second countable. G, however, is a C°°-manifold which might not be
Hausdorff. A point in G is an equivalence class of C°°-paths

~v:[0,1] - V

such that () remains within one leaf of the foliation for all # € [0, 1]. Set
s(v) = v(0), r(y) = y(1). The equivalence relation on the ~y preserves s(v)

and r(y) so G comes equipped with two maps G 3 V.

Let Z be a possibly non-Hausdorff C°°-manifold. Assume given a C*°-map
p: Z—V, set

ZoG={(z,7) €ZxG|p(z) =s(7)} .

A C®° right action of G on Z is a C°°-map
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ZoG—Z

denoted by
(z,7) — 2
such that
py) =r(y), @Y =2rY), @)=z,

where [, denotes the constant path at p € V.

An action of G on Z is proper if:
(i) the map ZoG — Z X Z given by (z,7) — (z,z7) is proper (i.e. the inverse

image of a compact set is compact);

(ii) the quotient space Z/T" is Hausdorff. Here Z/T" is the set of equivalence
classes of z € Z where z ~ 7’ if, for some v € G, zy=17'.

Specializing to Z =V, the groupoid G acts on V by p(p) =p and

py = (1)

(peV, veG, p=~(0)). For many examples this action of G on V is not
proper. Set v, = T,V /F,, so that v is the normal bundle of the foliation. v
is a G-vector bundle since the derivative of holonomy gives a linear map

Vp ™ Vpy -

This is, of course, just the well-known fact that v is flat along the leaves of
the foliation.

More generally, if Z is a G-manifold, then the orbits of the G-action
foliate Z. Denote the normal bundle of this foliation by ©. Then v is a
G-vector bundle on Z.

If Z is a proper G-manifold, a G-vector bundle on Z with G-compact
support is a triple (Ey, Ey,0) where Eg, E; are G-vector bundles on Z and
o: Ey — E; is a morphism of G-vector bundles with Support (0) G-compact.
As in §2 above one then defines Vé;(Z) and KE(Z) , 1 =0,1. These are defined
and used only for proper G-manifolds.

DEFINITION 1. A K-cocycle for (V,F) is a pair (Z,£) such that
(1) Z is a proper G-manifold,

2) £ € V5l()* @ p*v*], where p: Z — V is given by the action of G
on Z.

In [12] and [14] a canonical C*-algebra C*(V,F) is constructed. This
C*-algebra can heuristically be thought of (up to Morita equivalence) as the
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algebra of continuous functions on the “space of leaves” of the foliation. Thus
K.C*(V,F) can be viewed as the K-theory of the “space of leaves” of the
foliation.

To define the geometric K-theory K*(V,F) we proceed quite analogously
to §2 above.

THEOREM 2. Let (Z,&) be a cocycle for (V,F). Then (Z,£) determines
an element in K,C*(V,F).

Proof. If p: Z — V is a submersion then & gives rise to the symbol of a
G -equivariant family of elliptic operators D, parametrized by the points of V.
The K-theory index of this family D is the desired element of K,.C*(V,F).

If p: Z — V is not a submersion, then as in the proof of Theorem 1 of
§2 one reduces to the submersion case.  []

REMARK 3. With D as in the proof of the Theorem, Index(D) € K.C*(V, F)
will be denoted w(Z,&). For & € VL[0)* @ p*v*], w(Z,&) € K; C*(V, F),
i=0,1.

Suppose given a commutative diagram

Z; —l—>22

Pl\ ./Pz
vV

where Z;,Z, are G-manifolds with Z;,Z, proper and & is a G-map. There
is then a Gysin map

hy: K5 [(0)* @ p v*] — K5 [(72)* @ p3 1*].
THEOREM 4. If & € VE[(1)*® @ pi V] then w(Z1,&1) = (Zp, hi(61)).
REMARK 5. Let I'(V,F) be the collection of all K-cocycles (Z,¢&) for

(V,F). On I'(V, F) impose the equivalence relation ~, where (Z, &) ~ (Z',¢)
if and only if there exists a commutative diagram

Z _L) Z// (_ﬁ_ Z/
P\, lp// / p/

V
with # and A’ G-maps and with (&) = hy(£').
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DEFINITION 6. K*(V,F) = I'(V, F)/~. Addition in K*(V, F) is by disjoint
union of K-cocycles. The natural homomorphism of abelian groups

K'(V,F) — K; C*(V,F)

is defined by
(Z,8) = Z,8).

CONJECTURE. pu: K*(V,F) — K.C*(V,F) is an isomorphism.

REMARK 7. Calculations of M. Pennington [25] and A.M. Torpe [32]
verify the conjecture for certain foliations.

Given (V,F), let BG be the classifying space of the holonomy groupoid
G. Since v is a G-vector bundle on V, v induces a vector bundle 7 on BG.
As in §3 above there is then a natural map

K7(BG) — K*(V,F).

PROPOSITION 8. The natural map K.(BG) — K*(V,F) is rationally
injective. If G is torsion free then K] (BG) — K*(V,F) is an isomorphism.

REMARK 9. Examples show that for foliations with torsion holonomy, the
map K](BG) — K*(V,F) may fail to be an isomorphism.

THEOREM 10. If F admits a C°° Euclidean structure such that the

Riemannian metric for each leaf has all sectional curvatures non-positive,
then

w: K*(V,F) — K.C*(V, F)

IS injective.

10. FURTHER DEVELOPMENTS

The theory outlined in §§1-8 can be developed in various directions. We
very briefly mention two of them here.

Let A be a C*-algebra. If G is a Lie group and X is a G-manifold, then
using A as coefficients there is both a geometric and an analytic K-theory for
(X, G). The analytic K-theory is the K-theory of the C*-algebra (Co(X)x G)®A .
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The geometric K-theory is obtained from K-cocycles (Z,&,f) where Z,f are
as in §2 and ¢ = {Ey = E;} uses G-vector bundles Ey, E; on T*Z®f*T*X
such that the fibres of E; are finitely generated projective modules over A.
Denote this geometric K-theory by K*(X,G;A). The natural map

K'(X,G;A) — Kil(Co(X) x G) ® A]

is defined by using elliptic operators in the spirit of Miscenko-Fomenko [22].
We conjecture that this natural map is an isomorphism.

In the notation of Kasparov [18] the group denoted here by K,[Co(X) % G]
is KK(C, Co(X) x G). For the K-homology group KK(Cy(X) x G,C) there
is a geometric group K.(X,G) which is the G-equivariant version of the
topologically defined K-homology of [9]. Using transversally elliptic operators
[2] one then obtains a natural map

K.(X,G) — KK(Co(X) 1 G,C).

We conjecture that this map is injective and that its image is dense (with
respect to the natural topology) in KK(Cy(X) % G, C).
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EDITORS’ NOTE

The paper by Paul Baum and Alain Connes has been printed here
as it was circulated in 1982, without change. (But we have updated the
references that were preprints in 1982 and have appeared since; and a
small number of typographical corrections have been made.) The subject has
developed considerably over the last 18 years, as testified by the supplementary
bibliography below, for which we express our debt to Alain Valette.

We would also like to make the following remarks:

(i) The conjecture on the invariance of certain foliation characteristic
classes, alluded to at the end of Section 1 in the above paper, has appeared
in:

BAUM, P. and A. CONNES. Leafwise homotopy equivalence and rational Pontrjagin

classes. In: Foliations (Tokyo, 1983). Adv. Stud. Pure Math. 5, 1-14. North-
Holland, 1985.

(i) Concerning Corollary 5 and Remark 7 of §5 above, Cédric Béguin
has observed that it is necessary to assume that G is connected (and not only
that 7o(G) is finite), as is shown by the example in which G is the group
{x—=ax+b|lacR*beR} and H the subgroup {x — 4x}. Indeed, the
connectedness of H is used by Baum and Connes just after their Remark 4.
This observation is repeated from

BEGUIN, C. Autour de la conjecture des idempotents. These, Université de Neuchatel,
1999.

(ii) The conjecture on the range of the map tr: K,C*G — R for a

group G with torsion, stated just before Corollary 4 in §7, has been disproved
n:

ROY, R. The trace conjecture — a counterexample. K-Theory 17 (1997), 209-213.

Roy’s example indicates that, if G has p-torsion (p a prime) then ‘higher
powers of p in denominators do appear in the range of the trace map.

(iv) Finally, we would like to mention that the paper by P. Baum and
A. Connes has motivated several books still in preparation, including one by
J. Roe and N. Higson, and one by A. Valette.
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