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Visualisons les invariants ainsi réalisés sur le diagramme des involutions
(cf. Figure 16). On observe que pour d = 8, les lissifications atténuées et
maximales effectuent une «jonction» (cf. Figure 16), qui ne fera que s’accroitre
pour les degrés supérieurs. Ce qui garantit que I’on a mis la main sur presque
tous les invariants Rohlin-admissibles pour les courbes séparantes.

Etape 5. On note cependant que pour d = 6, il nous manque encore
la courbe d’invariants (d,r,a) = (6,7,0) qui échappe a cette méthode. Il
n’est cependant pas difficile d’imaginer une petite construction «ad hoc»
qui colmate cette lacune éphémere. On considére a cet effet la configuration
de 3 coniques transverses de la Figure 17, dont la déformation proposée
fournit la courbe Cs manquante d’invariants (d,r,a) = (6,7,0). (Noter que
c’est I’unique endroit dans tout I’argument ou il est nécessaire de connaitre
explicitement une orientation complexe).

FIGURE 17

En résumé nous avons démontré :

THEOREME 7.1.  Pour les courbes planes réelles lisses de degré pair, la
restriction de Rohlin est la seule sur les invariants (d,r,a).

7.2 LES COURBES DE DEGRE IMPAIR

Il nous reste a traiter le cas des courbes de degré impair; les valeurs
admissibles des invariants (d,r,a) sont alors résumées par la Figure 18.

A nouveau on utilise la méthode de Hilbert, qui pour les degrés impairs
démarre avec C); une droite réelle et E, une conique réelle rencontrant C;
en deux points réels. La déformation de Cy-Ey =0 de la Figure 19 fournit
une M-courbe C; de degré 3.

Ensuite on construit une M-courbe Cs de degré 5 en faisant vibrer une
des composantes de Cs, ce qui fournit une nouvelle cubique C; oscillant
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FIGURE 18

relativement a la conique génératrice E, (cf. Figure 19). La simplification
dessinée des points doubles de Csz-E, = 0 fournit la M -courbe Cs cherchée.

Ensuite la méme technique de grignotage des ovales nouveau-nés dans une
M -courbe de Hilbert, fournit des courbes non-séparantes avec un invariant r
décroissant successivement d’une unité jusqu’a atteindre la borne de Harnack
relative au degré impair précédent, i.e. M(d — 2). Les invariants (d,r,a)
ainsi réalisés sont schématisés par des fleches sur la Figure 18. Ensuite en
complétant la famille des courbes ainsi obtenues avec les courbes de Fermat
de degré impair Fy : x?+y? = 1 qui ont r = 1 et qui sont non-séparantes pour
d > 3 (d’apres I'inégalité de Rohlin par exemple), on met a nouveau la main
sur un systeme de courbes permettant d’engendrer toutes les non-séparantes
via I’opération de collage d’une petite conique. Ainsi la restriction de Galois
est la seule pour les courbes non-séparantes de degré impair.
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FIGURE 19

G

Pour les séparantes, la méme méthode qu’avant fournit les invariants
délimités par la ligne en tirets sur le diagramme des involutions (cf. Figure 18).
On observe cette fois que I’on manque deux invariants Rohlin-admissibles,
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a savoir (d,r,a) = (5,5,0) et (d,r,a) = (7, 10,0) : le premier s’obtient
en rajoutant une droite & une courbe d’invariants (d,r,a) = (4,4,0), puis en
simplifiant de fagon compatible avec les orientations complexes (cf. Figure 20).

FIGURE 20

Le second s’obtient de la méme maniére a partir de la courbe de la
Figure 15 d’invariants (d,r,a) = (6,9,0) (cf. Figure 21).
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FIGURE 21

En résumé nous avons démontré :

THEOREME 7.2. Pour les courbes planes réelles lisses de degré impair, les
restrictions de Galois et de Rohlin sont les seules sur les invariants (d,r,a).

Cela résout donc completement le probleme de Klein de la caractérisation
des surfaces symétriques réalisables comme courbes réelles lisses dans le plan.
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