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THÉORÈME (Fiedler 1978). Soient C\, C2 deux courbes planes de degrés

respectifs d\,di réelles, lisses et transverses, et C une courbe réelle lisse de

degré d d\ + ^2 voisine de C\ • C2 0 qui simplifie (de façon non-précisée

pour V instant) tous les points doubles de Cj C% 0.

• Il suffit qu'une des deux courbes C\ ou C2 soit non-séparante, pour

que la courbe C le soit, et ce indépendamment des simplifications effectuées.

Autrement dit en termes génétiques, « non-séparant » est un caractère dominant.

• Si par contre les courbes C\ et C2 sont de caractères récessifs,

c'est-à-dire séparantes, et si en outre tous les d\ • ^2 points d'intersection

de Cj avec C2 sont réels (cette condition pourra être satisfaite dans les

constructions à venir) alors, d'après Brusotti, la courbe C\ • C2 0 peut
être simplifiée de 2dydl façons distinctes, mais parmi tous ces choix de

simplifications, exactement deux livrent des courbes séparantes, à savoir celui

qui est toujours positif respectivement toujours négatif, relativement à des

orientations complexes fixées de C\ et C2 - De plus pour un tel choix de

simplifications dicté par les orientations complexes, l'orientation complexe de

la courbe simplifiée C se déduit par transfert de celle de l'un de ses deux

parents.

Preuve. Seule la seconde assertion nécessite une explication. La
simplification de chaque nœud de C\ C2 0 (qui sont tous réels et non-isolés)
revient à attacher une anse contenant deux brins réels sur l'union disjointe de

Ci avec C2. Cette anse privée des brins réels relie une moitié de Ci avec

une moitié de C2 (ainsi que les moitiés conjuguées correspondantes). Ainsi

pour que la courbe simplifiée C soit séparante, il faut (et il suffit) que toutes
les simplifications effectuées correspondent à des attachements d'anses reliant
systématiquement les mêmes moitiés. Ainsi notre seule liberté, si on aspire à

fabriquer une courbe C séparante, réside dans le choix des deux moitiés que
l'on relie initialement, et il est clair que l'on dispose de deux tels choix.

7. LE PROBLÈME DE KLEIN: CONSTRUCTION DE COURBES

On va commencer par traiter le cas des degrés pairs, le cas des degrés
impairs admettera ensuite un traitement similaire. Les constructions qu'on va
entreprendre se décomposent en les étapes suivantes :

Etape 0. On commence par s'entraîner avec les petits degrés d 2,4.
Étape 1. On rappelle la méthode de Hilbert de construction de courbes

Harnack-maximales.
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Étape 2. Ensuite en vertu de Brusotti, on va explorer d'autres choix de

simplifications qui vont livrer des courbes non-séparantes avec moins d'ovales.

Etape 3. On disposera alors déjà d'un système d'invariants permettant
d'attraper toutes les non-séparantes, via une opération simple qui consiste à

rajouter une petite conique.

Etape 4. A ce stade, il nous restera à réaliser les courbes séparantes

non prohibées par Rohlin, qui s'obtiendront en exploitant les 2 choix de

simplifications compatibles avec les orientations complexes.

Etape 5. Enfin, en répertoriant les invariants ainsi réalisés, on constatera

qu'il nous manque encore quelques invariants non prohibés par Rohlin, que
l'on attrapera cependant par de petites constructions «ad hoc».

7.1 Les courbes de degré pair

Étape 0. • Pour d 2 on a g 0, et il n'y a alors que deux surfaces

symétriques qui sont la sphère équatoriale et antipodale, respectivement
réalisées par x2 -h y2 1 et x2 + y2 — 1.

Observer plus généralement que x4 + yd —1 livre les invariants

(d, r 0,1) pour tout d pair.

• Pour d 4, on considère une paire de coniques réelles C2 U £2 C P2

s'intersectant en 4 points réels, que l'on peut déformer en les quartiques
réelles lisses de la Figure 9. D'après Fiedler la première et la dernière de ces

courbes (que Klein appelait la Gürtelkurve) sont séparantes (les simplifications
effectuées étant compatibles avec les orientations complexes) et toutes les autres

sont non-séparantes.

Figure 9
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En se souvenant des 6 surfaces symétriques de genre g — 3 (cf. Figure 2),

on observe que pour d — 4 il n'y a pas de restrictions aux invariants de

Klein.

Remarque. Un argument plus synthétique pour révéler le caractère

séparant de la Gürtelkurve, consiste à regarder le pinceau des droites passant

par un point p réel choisi le plus à l'intérieur du nid (cf. Figure 9). Ce pinceau

jouit de la propriété remarquable que tous ses membres réels (qui sont des

droites réelles par p) découpent sur C4 exclusivement des points réels. Le

morphisme correspondant C4 —> P1 est donc saturé, i.e. ses fibres au-dessus

des points réels sont toutes exclusivement formées de points réels. Par suite,

il envoie les points imaginaires de C4 sur des points imaginaires du pinceau

qui s'identifie à une sphère équatoriale. Cette dernière étant séparante, il en

résulte que C4 l'est aussi.

Ce même argument montre plus généralement que la borne inférieure de

Rohlin est toujours réalisée, i.e. pour tout degré d il existe une courbe plane
réelle lisse séparante avec r — [^jn-] composantes. En effet, en perturbant un

peu une réunion de k cercles concentriques, on peut obtenir une courbe Q
lisse de degré pair d — 2k avec r — k composantes. Une telle courbe est

séparante (il suffit comme plus haut de considérer le pinceau des droites par
un point choisi le plus à l'intérieur du nid). Pour les degrés impairs, il suffit
de rajouter à la configuration précédente une droite réelle «à l'infini» (et de
lissifier le tout).

Etape 1. Rappelons maintenant la méthode de Hilbert de construction de
M-courbes (cf. [Gu], p. 20) qui s'effectue séparément suivant la parité du
degré.

Considérons deux coniques réelles C2 et E2 s'intersectant en 4 points réels

PuP2,P3,P4, et C4° une quartique voisine avec r 4. Soit d4 ss lx • l2 • l3 l4
une quartique réunion de 4 droites réelles intersectant chacune l'arc de E2(R)
délimité par px et p2 en 2 points (cf. Figure 10), et considérons alors
C4 := Cl + £$4 0 où £ désigne un petit nombre réel.

Cette petite perturbation a pour effet de faire «vibrer» un des ovales de
notre quartique relativement à la conique E2 (cf. Figure 10). On applique
ensuite Brusotti à la courbe C4 • E2 0 et le choix de simplifications de
la Figure 10 fournit une courbe lisse C6 qui possède r 4 + (3 + 4) 11

ovales, ce qui est la borne de Harnack pour d — 6.
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La méthode de Hilbert peut se schématiser par le dessin de la Figure 11,

et en exploitant les 2 choix de simplifications de C4 • E2 0 compatibles
avec des orientations complexes on obtient deux courbes séparantes avec

r 4-F(3+4) ll et r 4 + 1 5 respectivement (cf. Figure 11).

REMARQUE. Noter ici qu'il n'est même pas nécessaire de connaître

explicitement l'orientation complexe de C4, vu que l'intersection C4 D E2

est monopolisée par un seul ovale de C4. Il suffit d'orienter (arbitrairement)
les ovales de C4(R) et de ^(R) se rencontrant, et ces orientations locales

(i.e. d'un ovale sur chaque courbe) se prolongeront univoquement en des

orientations complexes des ovales restants, mais qu'il est inutile d'expliciter
vu qu'elles n'influenceront pas le choix de simplifications.

Étape 2. L'observation importante est maintenant qu'en faisant varier le

choix des simplifications de la courbe C4 • E2 0 de la Figure 11 (ce qui est

loisible d'après Brusotti), on peut aussi obtenir les courbes de la Figure 12, qui
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v/\z-*~

Figure 11

sont toutes non-séparantes (les deux choix séparants ayant déjà été exploités).
Observer que l'invariant r diminue successivement d'une unité r ~

10,9,...,4 jusqu'à atteindre la borne de Harnack relative au degré pair
précédent. Je parle de grignotage d'ovales dans une M-courbe de Hilbert.

Figure 12

On itère ensuite la construction de Hilbert en faisant vibrer un ovale de
la M-courbe Ce de la Figure 11, ce qui fournit une nouvelle courbe Ce de
degré 6 qui oscille à travers E2 au voisinage de l'ovale excité (cf. Figure 13).
Ensuite en simplifiant les points doubles de Ce • E2 — 0, on peut obtenir la
courbe C8 de degré 8 de la Figure 13, qui possède r 11 -h (5 + 6) 22
ovales.
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Figure 13

Remarque. On observe que l'on rajoute toujours à l'invariant r deux

entiers consécutifs, ce qui permet de se convaincre que les courbes Cd

construites par Hilbert réalisent bien toujours la borne de Harnack, puisque

r 1 + 2) + (3 + 4) + • • • + (d— 3) + — 2) + 1 + j + i.

Faisons le point sur le diagramme des involutions (restreint aux degrés pairs)
des valeurs des invariants (<i, r, a) obtenus par cette méthode de grignotage
dans une M-courbe de Hilbert (cf. Figure 14).
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Figure 14

Cette méthode fournit des courbes non-séparantes Cd avec un invariant r
décroissant successivement d'une unité jusqu'à atteindre la borne de Harnack

relative au degré pair précédent, i.e. M(d — 2) g(d — 2) + 1.
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Étape 3. Ensuite étant donné une courbe non-séparante Cd, on peut toujours

lui rajouter une petite conique C2, c'est-à-dire une conique réelle, ayant des

points réels, mais de partie réelle disjointe de celle de Q et (de complexifiée)

transverse à Cd - La courbe Cd • C2 0 possède alors 2d nœuds imaginaires

conjugués dont la simplification fournit une courbe Cd+2 non-séparante (« non-

séparant» étant un caractère dominant) et qui possède un ovale de plus que la

courbe donnée, i.e. r(Q+2) — KQ) +1 • On baptise cette opération le collage

d'une petite conique.

Remarque. Pour fabriquer une telle petite conique, il suffit de choisir

un point p de P2(R) n'appartenant pas à Q(R) et de perturber un peu le

produit d'une droite imaginaire l passant par p et transverse à Q avec sa

droite conjuguée F de sorte que le point réel isolé p de la conique dégénérée

l F — 0 se transforme en un petit ovale autour de p. On peut déjà observer

que cette opération s'appliquera également lorsque d sera impair.

Ainsi il est aisé (au niveau des courbes non-séparantes) de réaliser

l'opération (d, r, 1) 1— (d+2, r+1,1)- D'autre part, comme les non-séparantes

avec r — 0 s'obtiennent en considérant l'équation Xe1 -\-yd — 1, on constate

avec satisfaction en contemplant le diagramme des involutions (cf. Figure 14),

que l'on dispose déjà d'un système de courbes non-séparantes permettant,

moyennant itération successive de l'opération de collage d'une petite conique,
d'attraper toutes les courbes non-séparantes restantes. Ceci montre qu'en degré

pair tous les invariants des courbes non-séparantes sont réalisables dans le plan.

Etape 4. A ce stade il ne nous reste plus qu'à construire les courbes

séparantes non prohibées par Rohlin, i.e. avec r tel que :

L'idée pour attraper d'autres valeurs intermédiaires de r consiste à appliquer
la même technique de vibration d'un ovale, mais cette fois à une courbe
séparante non nécessairement Harnack-maximale.

Explicitement, au lieu de démarrer avec une M-courbe de degré 4, on
considère la quartique C4 de la Figure 15 avec (d,r,a) (4,2,0). On peut
faire vibrer un ovale de C4 relativement à E2 (cf. Figure 15), et les 2 choix
de simplifications de C4 • E2 0 compatibles avec des orientations complexes
livrent des courbes séparantes avec r 2 + (3 + 4) 9 et r 2 + 1 3

respectivement (cf. Figure 15).

^<r< g(d) + 1
(d - 1) (d - 2)

2
+ 1 et r g(d) + 1 (mod 2)
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Figure 15

Plus généralement, la même technique (de vibration d'un ovale de Cd

relativement à une conique génératrice E2, suivie des 2 simplifications de

Cd E2 0 compatibles avec des orientations complexes) permet de construire
à partir d'une courbe d'invariants (d, r, 0) deux courbes séparantes d'invariants

(d + 2, r + 2d — 1,0) et (d + 2, r + 1,0) avec r croissant respectivement à

la vitesse de la borne de Harnack (lissification maximale) et à vitesse 1

(lissification atténuée).

Figure 16
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Visualisons les invariants ainsi réalisés sur le diagramme des involutions

(cf. Figure 16). On observe que pour d — 8, les lissifications atténuées et

maximales effectuent une «jonction» (cf. Figure 16), qui ne fera que s'accroître

pour les degrés supérieurs. Ce qui garantit que l'on a mis la main sur presque
tous les invariants Rohlin-admissibles pour les courbes séparantes.

Etape 5. On note cependant que pour d 6, il nous manque encore
la courbe d'invariants (d, r, <2) (6,7,0) qui échappe à cette méthode. Il
n'est cependant pas difficile d'imaginer une petite construction «ad hoc»
qui colmate cette lacune éphémère. On considère à cet effet la configuration
de 3 coniques transverses de la Figure 17, dont la déformation proposée
fournit la courbe Ce manquante d'invariants (d, r, a) (6,7,0). (Noter que
c'est l'unique endroit dans tout l'argument où il est nécessaire de connaître

explicitement une orientation complexe).

En résumé nous avons démontré:

Théorème 7.1. Pour les courbes planes réelles lisses de degré pair, la
restriction de Rohlin est la seule sur les invariants (d,r,a).

7.2 Les courbes de degré impair

Il nous reste à traiter le cas des courbes de degré impair; les valeurs
admissibles des invariants (d,r,a) sont alors résumées par la Figure 18.

A nouveau on utilise la méthode de Hilbert, qui pour les degrés impairs
démarre avec Ci une droite réelle et E2 une conique réelle rencontrant Ci
en deux points réels. La déformation de Ci • E2 0 de la Figure 19 fournit
une M-courbe C3 de degré 3.

Ensuite on construit une M-courbe C5 de degré 5 en faisant vibrer une
des composantes de C3, ce qui fournit une nouvelle cubique C3 oscillant

Figure 17
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Figure 18

relativement à la conique génératrice £2 (cf. Figure 19). La simplification
dessinée des points doubles de C3 £2 0 fournit la M-courbe C5 cherchée.

Ensuite la même technique de grignotage des ovales nouveau-nés dans une
M-courbe de Hilbert, fournit des courbes non-séparantes avec un invariant r
décroissant successivement d'une unité jusqu'à atteindre la borne de Harnack
relative au degré impair précédent, i.e. M(d — 2). Les invariants {d, r, a)
ainsi réalisés sont schématisés par des flèches sur la Figure 18. Ensuite en

complétant la famille des courbes ainsi obtenues avec les courbes de Fermât
de degré impair Fd : ^ +yd 1 qui ont r — 1 et qui sont non-séparantes pour
d > 3 (d'après l'inégalité de Rohlin par exemple), on met à nouveau la main

sur un système de courbes permettant d'engendrer toutes les non-séparantes

via l'opération de collage d'une petite conique. Ainsi la restriction de Galois

est la seule pour les courbes non-séparantes de degré impair.

Figure 19

Pour les séparantes, la même méthode qu'avant fournit les invariants

délimités par la ligne en tirets sur le diagramme des involutions (cf. Figure 18).

On observe cette fois que l'on manque deux invariants Rohlin-admissibles,



COURBES RÉELLES 159

à savoir (d,r,à) (5,5,0) et (d,r,a)(7,10,0): le premier s'obtient

en rajoutant une droite à une courbe d'invariants (4,4,0), puis en

simplifiant de façon compatible avec les orientations complexes (cf. Figure 20).

Figure 20

Le second s'obtient de la même manière à partir de la courbe de la

Figure 15 d'invariants (d,r,à) — (6,9,0) (cf. Figure 21).

Figure 21

En résumé nous avons démontré:

THÉORÈME 7.2. Pour les courbes planes réelles lisses de degré impair, les

restrictions de Galois et de Rohlin sont les seules sur les invariants (<d, r, a).

Cela résout donc complètement le problème de Klein de la caractérisation
des surfaces symétriques réalisables comme courbes réelles lisses dans le plan.

t.-
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