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THEOREME (Fiedler 1978). Soient C;, C, deux courbes planes de degrés
respectifs di,d, réelles, lisses et transverses, et C une courbe réelle lisse de
degré d = di +d, voisine de Cy-C, =0 qui simplifie (de fagon non-précisée
pour instant) tous les points doubles de Cy-Cp = 0.

e Il suffit qu'une des deux courbes Cy ou C, soit non-séparante, pour
que la courbe C le soit, et ce indépendamment des simplifications effectuées.
Autrement dit en termes génétiques, « non-séparant » est un caractere dominant.

e Si par contre les courbes Cy et C, sont de caractéres récessifs,
c’est-a-dire séparantes, et si en outre tous les dy - d, points d’intersection
de Ci avec C, sont réels (cette condition pourra étre satisfaite dans les
constructions a venir) alors, d’aprés Brusotti, la courbe C, - C, = 0 peut
étre simplifiée de 2%% facons distinctes, mais parmi tous ces choix de
simplifications, exactement deux livrent des courbes séparantes, a savoir celui
qui est toujours positif, respectivement toujours négatif, relativement a des
orientations complexes fixées de Ci et C,. De plus pour un tel choix de
simplifications dicté par les orientations complexes, 1’orientation complexe de
la courbe simplifiée C se déduit par transfert de celle de 'un de ses deux
parents.

Preuve. Seule la seconde assertion nécessite une explication. La simpli-
fication de chaque nceud de C; - C; = 0 (qui sont tous réels et non-isolés)
revient a attacher une anse contenant deux brins réels sur ’union disjointe de
Ci; avec (C,. Cette anse privée des brins réels relie une moitié de C; avec
une moiti€é de C, (ainsi que les moiti€s conjuguées correspondantes). Ainsi
pour que la courbe simplifiée C soit séparante, il faut (et il suffit) que toutes
les simplifications effectuées correspondent a des attachements d’anses reliant
systématiquement les mémes moitiés. Ainsi notre seule liberté, si on aspire a
fabriquer une courbe C séparante, réside dans le choix des deux moiti€s que
I’on relie initialement, et il est clair que ’on dispose de deux tels choix. [

7. LE PROBLEME DE KLEIN: CONSTRUCTION DE COURBES

On va commencer par traiter le cas des degrés pairs, le cas des degrés
impairs admettera ensuite un traitement similaire. Les constructions qu’on va
entreprendre se décomposent en les étapes suivantes :

Etape 0. On commence par s’entrainer avec les petits degrés d = 2, 4.

Etape 1. On rappelle la méthode de Hilbert de construction de courbes
Harnack-maximales.
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Etape 2. Ensuite en vertu de Brusotti, on va explorer d’autres choix de
simplifications qui vont livrer des courbes non-séparantes avec moins d’ovales.

E‘tape 3. On disposera alors déja d’un systeme d’invariants permettant
d’attraper toutes les non-séparantes, via une opération simple qui consiste a
rajouter une petite conique.

Etape 4. A ce stade, il nous restera a réaliser les courbes séparantes
non prohibées par Rohlin, qui s’obtiendront en exploitant les 2 choix de
simplifications compatibles avec les orientations complexes.

Etape 5. Enfin, en répertoriant les invariants ainsi réalisés, on constatera
qu’il nous manque encore quelques invariants non prohibés par Rohlin, que
I’on attrapera cependant par de petites constructions «ad hoc».

7.1 LES COURBES DE DEGRE PAIR

Etape 0. « Pour d =2 on a g =0, et il n’y a alors que deux surfaces
symétriques qui sont la sphere équatoriale et antipodale, respectivement
réalisées par x* +y* =1 et x* +y* = —1.

Observer plus généralement que x% + y¢ = —1 livre les invariants
(d,r=0,1) pour tout d pair.

e Pour d =4, on considére une paire de coniques réelles C, U E; C P?
s’intersectant en 4 points réels, que ’on peut déformer en les quartiques
réelles lisses de la Figure 9. D’aprés Fiedler la premiere et la derniere de ces
courbes (que Klein appelait la Giirtelkurve) sont séparantes (les simplifications
effectuées étant compatibles avec les orientations complexes) et toutes les autres
sont non-séparantes. |
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FIGURE 9
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En se souvenant des 6 surfaces symétriques de genre g = 3 (cf. Figure 2),
on observe que pour d = 4 il n’y a pas de restrictions aux invariants de

Klein.

REMARQUE. Un argument plus synthétique pour réveler le caracteére
séparant de la Giirtelkurve, consiste a regarder le pinceau des droites passant
par un point p réel choisi le plus a I'intérieur du nid (cf. Figure 9). Ce pinceau
jouit de la propriété remarquable que tous ses membres réels (qui sont des
droites réelles par p) découpent sur C4 exclusivement des points réels. Le
morphisme correspondant C; — P! est donc saturé, i.e. ses fibres au-dessus
des points réels sont toutes exclusivement formées de points réels. Par suite,
il envoie les points imaginaires de C, sur des points imaginaires du pinceau
qui s’identifie a2 une sphere équatoriale. Cette derniere étant séparante, il en
résulte que C4 ’est aussi.

Ce méme argument montre plus généralement que la borne inférieure de
Rohlin est toujours réalisée, i.e. pour tout degré d il existe une courbe plane
réelle lisse séparante avec r = [%ﬂ] composantes. En effet, en perturbant un
peu une réunion de k cercles concentriques, on peut obtenir une courbe Cj
lisse de degré pair d = 2k avec r = k composantes. Une telle courbe est
séparante (il suffit comme plus haut de considérer le pinceau des droites par
un point choisi le plus a I'intérieur du nid). Pour les degrés impairs, il suffit
de rajouter a la configuration précédente une droite réelle «a 1’infini» (et de
lissifier le tout).

Etape 1. Rappelons maintenant la méthode de Hilbert de construction de
M-courbes (cf. [Gu], p.20) qui s’effectue séparément suivant la parité du
degré.

Considérons deux coniques réelles C, et E, s’intersectant en 4 points réels
P1,P2,P3,Pa, et Cj une quartique voisine avec r = 4. Soit ¥4 = I bl
une quartique réunion de 4 droites réelles intersectant chacune 1’arc de E,(R)
délimité par p; et p, en 2 points (cf. Figure 10), et considérons alors
Cyq == C,? +ev4 =0 ou € désigne un petit nombre réel.

Cette petite perturbation a pour effet de faire «vibrer» un des ovales de
notre quartique Cj relativement 2 la conique E, (cf. Figure 10). On applique
ensuite Brusotti a la courbe C4 - E, = 0 et le choix de simplifications de
la Figure 10 fournit une courbe lisse Cs qui posséde r = 4 + 3+4) =11
ovales, ce qui est la borne de Harnack pour d = 6.
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La méthode de Hilbert peut se schématiser par le dessin de la Figure 11,
et en exploitant les 2 choix de simplifications de Cy4 - E; = 0 compatibles
avec des orientations complexes on obtient deux courbes séparantes avec
r=4+4+3+4+4)=11 et r=4+1=>5 respectivement (cf. Figure 11).

REMARQUE. Noter ici qu’il n’est méme pas nécessaire de connaitre
explicitement l’orientation complexe de Cs, vu que l'intersection C; N E,
est monopolisée par un seul ovale de C,. Il suffit d’orienter (arbitrairement)
les ovales de C4(R) et de E,(R) se rencontrant, et ces orientations locales
(i.e. d’un ovale sur chaque courbe) se prolongeront univoquement en des
orientations complexes des ovales restants, mais qu’il est inutile d’expliciter
vu qu’elles n’influenceront pas le choix de simplifications.

Etape 2. L’observation importante est maintenant qu’en faisant varier le
choix des simplifications de la courbe C4-E; = 0 de la Figure 11 (ce qui est
loisible d’apres Brusotti), on peut aussi obtenir les courbes de la Figure 12, qui
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FIGURE 11

sont toutes non-séparantes (les deux choix séparants ayant déja été exploités).
Observer que l’invariant r diminue successivement d’une unité r =

10,9,...,4 jusqu’a atteindre la borne de Harnack relative au degré pair

précédent. Je parle de grignotage d’ovales dans une M -courbe de Hilbert.
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FIGURE 12

On itere ensuite la construction de Hilbert en faisant vibrer un ovale de
la M-courbe Cs de la Figure 11, ce qui fournit une nouvelle courbe Cg de
degré 6 qui oscille a travers E; au voisinage de ’ovale excité (cf. Figure 13).
Ensuite en simplifiant les points doubles de Cg - E, = 0, on peut obtenir la

courbe Cg de degré 8 de la Figure 13, qui posséde r = 11 + (5 + 6) = 22
ovales.
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FIGURE 13

REMARQUE. On observe que 1’on rajoute toujours a 1’invariant r deux
entiers consécutifs, ce qui permet de se convaincre que les courbes C,
construites par Hilbert réalisent bien toujours la borne de Harnack, puisque
r=(1+)+@+dD+-+@d-3)+d-2)+1=EED 11 -g41.

Faisons le point sur le diagramme des involutions (restreint aux degrés pairs)
des valeurs des invariants (d,r,a) obtenus par cette méthode de grignotage
dans une M -courbe de Hilbert (cf. Figure 14).
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FIGURE 14 ]

Cette méthode fournit des courbes non-séparantes C; avec un invariant r
décroissant successivement d’une unité jusqu’a atteindre la borne de Harnack
relative au degré pair précédent, i.e. M(d —2) =g(d —2) + 1.
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Etape 3. Ensuite étant donné une courbe non-séparante C,, on peut toujours
lui rajouter une petite conique C,, c’est-a-dire une conique réelle, ayant des
points réels, mais de partie réelle disjointe de celle de Cy et (de complexifiée)
transverse & Cy. La courbe C;-C, = 0 posséde alors 2d nceuds imaginaires
conjugués dont la simplification fournit une courbe Cgy42 non-séparante («non-
séparant» étant un caractére dominant) et qui posseéde un ovale de plus que la
courbe donnée, i.e. r(Cyq2) = r(Cy)+ 1. On baptise cette opération le collage
d’une petite conique.

REMARQUE. Pour fabriquer une telle petite conique, il suffit de choisir
un point p de P*(R) n’appartenant pas 2 C4(R) et de perturber un peu le
produit d’une droite imaginaire ! passant par p et transverse a Cy avec sa
droite conjuguée [ de sorte que le point réel isolé p de la conique dégénérée
[-1° =0 se transforme en un petit ovale autour de p. On peut déja observer
que cette opération s’appliquera également lorsque d sera impair.

Ainsi il est aisé (au niveau des courbes non-séparantes) de réaliser
I’opération (d,r,1) — (d+2,r+1,1). D’autre part, comme les non-séparantes
avec r = 0 s’obtiennent en considérant 1’équation x* +y¢ = —1, on constate
avec satisfaction en contemplant le diagramme des involutions (cf. Figure 14),
que l’on dispose déja d’un systtme de courbes non-séparantes permettant,
moyennant itération successive de 1’opération de collage d’une petite conique,
d’attraper toutes les courbes non-sé€parantes restantes. Ceci montre qu’en degré
pair tous les invariants des courbes non-séparantes sont réalisables dans le plan.

Etape 4. A ce stade il ne nous reste plus qu’a construire les courbes
séparantes non prohibées par Rohlin, i.e. avec r tel que:

d—-1)(d—-2)
5 +

g—grgg(d)+1: 1 et r=g(d)+1 (mod?2).

L’idé€e pour attraper d’autres valeurs intermédiaires de r consiste a appliquer
la. méme technique de vibration d’un ovale, mais cette fois a une courbe
séparante non nécessairement Harnack-maximale.

Explicitement, au lieu de démarrer avec une M -courbe de degré 4, on
considere la quartique C, de la Figure 15 avec (d,r,a) = (4,2,0). On peut
faire vibrer un ovale de C4 relativement & E, (cf. Figure 15), et les 2 choix
de simplifications de C4-E; = 0 compatibles avec des orientations complexes
livrent des courbes séparantes avec r =2+ B3 +4) =9 et r=24+1 = 3
respectivement (cf. Figure 15).
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Plus généralement, la méme technique (de vibration d’un ovale de Cy
relativement 2 une conique génératrice E,, suivie des 2 simplifications de
C,-E, = 0 compatibles avec des orientations complexes) permet de construire
a partir d’une courbe d’invariants (d, r,0) deux courbes séparantes d’invariants
d+2,r+2d—1,0) et (d+2,r+ 1,0) avec r croissant respectivement a
la vitesse de la borne de Harnack (lissification maximale) et a vitesse 1
(lissification atténuée).

d g 0 1 2 3 4 5 10 15 2 r
——t—t— >
2ol ° ]t =1 O restriction de Rohlin
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4 3
® [
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lissification atténuée lissification maximale

FIGURE 16 ﬁ



COURBES REELLES 157

Visualisons les invariants ainsi réalisés sur le diagramme des involutions
(cf. Figure 16). On observe que pour d = 8, les lissifications atténuées et
maximales effectuent une «jonction» (cf. Figure 16), qui ne fera que s’accroitre
pour les degrés supérieurs. Ce qui garantit que I’on a mis la main sur presque
tous les invariants Rohlin-admissibles pour les courbes séparantes.

Etape 5. On note cependant que pour d = 6, il nous manque encore
la courbe d’invariants (d,r,a) = (6,7,0) qui échappe a cette méthode. Il
n’est cependant pas difficile d’imaginer une petite construction «ad hoc»
qui colmate cette lacune éphémere. On considére a cet effet la configuration
de 3 coniques transverses de la Figure 17, dont la déformation proposée
fournit la courbe Cs manquante d’invariants (d,r,a) = (6,7,0). (Noter que
c’est I’unique endroit dans tout I’argument ou il est nécessaire de connaitre
explicitement une orientation complexe).

FIGURE 17

En résumé nous avons démontré :

THEOREME 7.1.  Pour les courbes planes réelles lisses de degré pair, la
restriction de Rohlin est la seule sur les invariants (d,r,a).

7.2 LES COURBES DE DEGRE IMPAIR

Il nous reste a traiter le cas des courbes de degré impair; les valeurs
admissibles des invariants (d,r,a) sont alors résumées par la Figure 18.

A nouveau on utilise la méthode de Hilbert, qui pour les degrés impairs
démarre avec C); une droite réelle et E, une conique réelle rencontrant C;
en deux points réels. La déformation de Cy-Ey =0 de la Figure 19 fournit
une M-courbe C; de degré 3.

Ensuite on construit une M-courbe Cs de degré 5 en faisant vibrer une
des composantes de Cs, ce qui fournit une nouvelle cubique C; oscillant
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FIGURE 18

relativement a la conique génératrice E, (cf. Figure 19). La simplification
dessinée des points doubles de Csz-E, = 0 fournit la M -courbe Cs cherchée.

Ensuite la méme technique de grignotage des ovales nouveau-nés dans une
M -courbe de Hilbert, fournit des courbes non-séparantes avec un invariant r
décroissant successivement d’une unité jusqu’a atteindre la borne de Harnack
relative au degré impair précédent, i.e. M(d — 2). Les invariants (d,r,a)
ainsi réalisés sont schématisés par des fleches sur la Figure 18. Ensuite en
complétant la famille des courbes ainsi obtenues avec les courbes de Fermat
de degré impair Fy : x?+y? = 1 qui ont r = 1 et qui sont non-séparantes pour
d > 3 (d’apres I'inégalité de Rohlin par exemple), on met a nouveau la main
sur un systeme de courbes permettant d’engendrer toutes les non-séparantes
via I’opération de collage d’une petite conique. Ainsi la restriction de Galois
est la seule pour les courbes non-séparantes de degré impair.

DD

FIGURE 19

G

Pour les séparantes, la méme méthode qu’avant fournit les invariants
délimités par la ligne en tirets sur le diagramme des involutions (cf. Figure 18).
On observe cette fois que I’on manque deux invariants Rohlin-admissibles,
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a savoir (d,r,a) = (5,5,0) et (d,r,a) = (7, 10,0) : le premier s’obtient
en rajoutant une droite & une courbe d’invariants (d,r,a) = (4,4,0), puis en
simplifiant de fagon compatible avec les orientations complexes (cf. Figure 20).

FIGURE 20

Le second s’obtient de la méme maniére a partir de la courbe de la
Figure 15 d’invariants (d,r,a) = (6,9,0) (cf. Figure 21).
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FIGURE 21

En résumé nous avons démontré :

THEOREME 7.2. Pour les courbes planes réelles lisses de degré impair, les
restrictions de Galois et de Rohlin sont les seules sur les invariants (d,r,a).

Cela résout donc completement le probleme de Klein de la caractérisation
des surfaces symétriques réalisables comme courbes réelles lisses dans le plan.



	7. Le problème de Klein: construction de courbes
	7.1 Les courbes de degré pair
	7.2 Les courbes de degré impair


