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148 A. GABARD

moitié€s (rebouchées par les adhérences des intérieurs des ovales) il obtient la
formule :

(1) 2t —IT7) =r — &
ou k = % et ou ’on suppose le degré d pair (le cas des degrés impairs
nécessite une discussion parallele effectuée par Mishachev [Mi]). Pour plus
de détails on renvoie a [R1], ou la formule (1) est démontrée dans le cas
particulier des courbes Harnack-maximales (aussi appelées M -courbes), et
pour I’énoncé général, on consultera [R2], p.91.

Ensuite il est purement formel a partir de la formule de Rohlin (1) de
déduire I’inégalité de Rohlin. En effet, si IT = ITT + I~ désigne le nombre
total de paires d’ovales emboités, on a Il < (;) , et alors d’apres (1):

r:k2+2(H+—H“)2kz—2H‘2k2—2H2k2—2(;) =k —r(r—1).

En se concentrant sur les membres extrémes, on en tire 7> > k*, et donc
r > k. Ce qui est précisement 1’inégalité de Rohlin pour d pair. On laisse au
soin du lecteur, la tiche analogue pour les degrés impairs en utilisant cette
fois la formule de Mishachev (cf. [R2], p.91). [

La suite de ’exposé est consacrée a la démonstration du théoréme suivant
qui résout completement le probleme de Klein:

THEOREME 5.2. Les restrictions de Galois (si d =1 (mod 2) alors r > 1)
et de Rohlin (si a = 0 alors r > [d—"z*—l] ) sont les seules contraintes sur les
invariants (d,r,a) de Klein pour les courbes algébriques planes réelles lisses.

6. LA GENETIQUE CHEZ LES COURBES PLANES REELLES

Avant de construire des courbes, notre probléme exige une compréhension
du comportement de l’invariant a lorsque ’on «accouple» deux courbes
planes réelles lisses transverses en simplifiant tous leurs points d’intersection
a la Brusotti. A ce sujet, on a le résultat suivant di a Fiedler (cf. [Fil, pp. 7-9) :
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THEOREME (Fiedler 1978). Soient C;, C, deux courbes planes de degrés
respectifs di,d, réelles, lisses et transverses, et C une courbe réelle lisse de
degré d = di +d, voisine de Cy-C, =0 qui simplifie (de fagon non-précisée
pour instant) tous les points doubles de Cy-Cp = 0.

e Il suffit qu'une des deux courbes Cy ou C, soit non-séparante, pour
que la courbe C le soit, et ce indépendamment des simplifications effectuées.
Autrement dit en termes génétiques, « non-séparant » est un caractere dominant.

e Si par contre les courbes Cy et C, sont de caractéres récessifs,
c’est-a-dire séparantes, et si en outre tous les dy - d, points d’intersection
de Ci avec C, sont réels (cette condition pourra étre satisfaite dans les
constructions a venir) alors, d’aprés Brusotti, la courbe C, - C, = 0 peut
étre simplifiée de 2%% facons distinctes, mais parmi tous ces choix de
simplifications, exactement deux livrent des courbes séparantes, a savoir celui
qui est toujours positif, respectivement toujours négatif, relativement a des
orientations complexes fixées de Ci et C,. De plus pour un tel choix de
simplifications dicté par les orientations complexes, 1’orientation complexe de
la courbe simplifiée C se déduit par transfert de celle de 'un de ses deux
parents.

Preuve. Seule la seconde assertion nécessite une explication. La simpli-
fication de chaque nceud de C; - C; = 0 (qui sont tous réels et non-isolés)
revient a attacher une anse contenant deux brins réels sur ’union disjointe de
Ci; avec (C,. Cette anse privée des brins réels relie une moitié de C; avec
une moiti€é de C, (ainsi que les moiti€s conjuguées correspondantes). Ainsi
pour que la courbe simplifiée C soit séparante, il faut (et il suffit) que toutes
les simplifications effectuées correspondent a des attachements d’anses reliant
systématiquement les mémes moitiés. Ainsi notre seule liberté, si on aspire a
fabriquer une courbe C séparante, réside dans le choix des deux moiti€s que
I’on relie initialement, et il est clair que ’on dispose de deux tels choix. [

7. LE PROBLEME DE KLEIN: CONSTRUCTION DE COURBES

On va commencer par traiter le cas des degrés pairs, le cas des degrés
impairs admettera ensuite un traitement similaire. Les constructions qu’on va
entreprendre se décomposent en les étapes suivantes :

Etape 0. On commence par s’entrainer avec les petits degrés d = 2, 4.

Etape 1. On rappelle la méthode de Hilbert de construction de courbes
Harnack-maximales.
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