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COURBES REELLES 147

5. LE PROBLEME DE KLEIN: DESCRIPTION DES PROHIBITIONS
Pour une courbe plane lisse C C P?, le genre est g = g;l_)_z(d_—g, ou d
désigne le degré de la courbe C. On va donc se restreindre aux genres de
cette forme, et il devient maintenant commode de substituer aux invariants
(g,r,a) les invariants (d,r,a).

Pour les degrés d impairs, une courbe plane réelle a toujours des points
réels; si bien qu’il est impossible de réaliser la surface symétrique sans point
fixe. Je me référerai a cette restriction sous le terme de restriction de Galois.

Ensuite comme conséquence des travaux de Klein sur le dénombrement
des caractéristiques-theta réelles impaires (cf. [K2]), Gross et Harris ont mis
en évidence une restriction plus subtile: st d =5 (mod 8) (auquel cas g =0
(mod 2)), alors il n’existe pas de courbe plane séparante avec r = 1 (cf.
[GrHa], Prop.7.1, p.173). Noter pourtant qu’'une telle surface symétrique
existe abstraitement puisque g est pair (cf. Figure 8). Ainsi déja en degré 5,
les courbes planes présentent des lacunes vis-a-vis des invariants (d,r,aq) :
impossibilité de fabriquer une quintique (plane réelle lisse) séparante n’ayant
qu’une composante.

FIGURE 8

En fait on a une restriction beaucoup plus forte due a Rohlin (cf. [Ma],
p-59):

THEOREME 5.1 (Inégalité de Rohlin). Si C est une courbe plane réelle
lisse séparante de degré d, alors r > [dJZL—l].

Preuve. Etant donné une courbe séparante C, Rohlin observe que la partie
réelle C(R) admet deux orientations de signes opposés comme bord des moitiés
de C\ C(R) et parle d’orientations complexes. En supposant maintenant la
courbe plane, il compare pour chaque paire d’ovales emboités, les orientations
complexes de ses deux ovales a celles comme bord des orientations de 1I’anneau
délimité par la paire dans P?(R). Lorsque ces orientations coincident il parle
d’une paire positive, et dans le cas contraire d’une paire négative, et note IT+
et I~ leur nombre respectif. En calculant 1’intersection dans P2(C) des deux
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moitié€s (rebouchées par les adhérences des intérieurs des ovales) il obtient la
formule :

(1) 2t —IT7) =r — &
ou k = % et ou ’on suppose le degré d pair (le cas des degrés impairs
nécessite une discussion parallele effectuée par Mishachev [Mi]). Pour plus
de détails on renvoie a [R1], ou la formule (1) est démontrée dans le cas
particulier des courbes Harnack-maximales (aussi appelées M -courbes), et
pour I’énoncé général, on consultera [R2], p.91.

Ensuite il est purement formel a partir de la formule de Rohlin (1) de
déduire I’inégalité de Rohlin. En effet, si IT = ITT + I~ désigne le nombre
total de paires d’ovales emboités, on a Il < (;) , et alors d’apres (1):

r:k2+2(H+—H“)2kz—2H‘2k2—2H2k2—2(;) =k —r(r—1).

En se concentrant sur les membres extrémes, on en tire 7> > k*, et donc
r > k. Ce qui est précisement 1’inégalité de Rohlin pour d pair. On laisse au
soin du lecteur, la tiche analogue pour les degrés impairs en utilisant cette
fois la formule de Mishachev (cf. [R2], p.91). [

La suite de ’exposé est consacrée a la démonstration du théoréme suivant
qui résout completement le probleme de Klein:

THEOREME 5.2. Les restrictions de Galois (si d =1 (mod 2) alors r > 1)
et de Rohlin (si a = 0 alors r > [d—"z*—l] ) sont les seules contraintes sur les
invariants (d,r,a) de Klein pour les courbes algébriques planes réelles lisses.

6. LA GENETIQUE CHEZ LES COURBES PLANES REELLES

Avant de construire des courbes, notre probléme exige une compréhension
du comportement de l’invariant a lorsque ’on «accouple» deux courbes
planes réelles lisses transverses en simplifiant tous leurs points d’intersection
a la Brusotti. A ce sujet, on a le résultat suivant di a Fiedler (cf. [Fil, pp. 7-9) :
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