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COURBES RÉELLES 147

5. Le problème de Klein: description des prohibitions

Pour une courbe plane lisse C C P2, le genre est g où d

désigne le degré de la courbe C. On va donc se restreindre aux genres de

cette forme, et il devient maintenant commode de substituer aux invariants

(p,r, <2) les invariants (d,r,a).
Pour les degrés d impairs, une courbe plane réelle a toujours des points

réels; si bien qu'il est impossible de réaliser la surface symétrique sans point
fixe. Je me référerai à cette restriction sous le terme de restriction de Galois.

Ensuite comme conséquence des travaux de Klein sur le dénombrement
des caractéristiques-theta réelles impaires (cf. [K2]), Gross et Harris ont mis

en évidence une restriction plus subtile : si d 5 (mod 8) (auquel cas g 0

(mod 2)), alors il n'existe pas de courbe plane séparante avec r — 1 (cf.
[GrHa], Prop. 7.1, p. 173). Noter pourtant qu'une telle surface symétrique
existe abstraitement puisque g est pair (cf. Figure 8). Ainsi déjà en degré 5,
les courbes planes présentent des lacunes vis-à-vis des invariants (,d, r, a) :

impossibilité de fabriquer une quintique (plane réelle lisse) séparante n'ayant
qu'une composante.

Figure 8

En fait on a une restriction beaucoup plus forte due à Rohlin (cf. [Ma],
p. 59):

THÉORÈME 5.1 (Inégalité de Rohlin). Si C est une courbe plane réelle
lisse séparante de degré d, alors r > [^^].

Preuve. Etant donné une courbe séparante C, Rohlin observe que la partie
réelle C(R) admet deux orientations de signes opposés comme bord des moitiés
de C \ C(R) et parle d'orientations complexes. En supposant maintenant la
courbe plane, il compare pour chaque paire d'ovales emboîtés, les orientations
complexes de ses deux ovales à celles comme bord des orientations de l'anneau
délimité par la paire dans P2(R). Lorsque ces orientations coïncident il parle
d une paire positive, et dans le cas contraire d'une paire négative, et note fl-*-
et fi" leur nombre respectif. En calculant l'intersection dans P2(C) des deux
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moitiés (rebouchées par les adhérences des intérieurs des ovales) il obtient la
formule :

(1) 2(n+ — IT)

où k | et où l'on suppose le degré pair (le cas des degrés impairs
nécessite une discussion parallèle effectuée par Mishachev [Mi]). Pour plus
de détails on renvoie à [RI], où la formule (1) est démontrée dans le cas

particulier des courbes Harnack-maximales (aussi appelées M-courbes), et

pour l'énoncé général, on consultera [R2], p. 91.

Ensuite il est purement formel à partir de la formule de Rohlin (1) de

déduire l'inégalité de Rohlin. En effet, si IT n+ + El- désigne le nombre
total de paires d'ovales emboîtés, on a n < Q, et alors d'après (1):

r k2 + 2(n+ - n") > fc2 - 21T > £2 - 211 > /c2 - 2 k1 — r(r — 1).

En se concentrant sur les membres extrêmes, on en tire r2 > k2, et donc

r >k. Ce qui est précisément l'inégalité de Rohlin pour d pair. On laisse au

soin du lecteur, la tâche analogue pour les degrés impairs en utilisant cette

fois la formule de Mishachev (cf. [R2], p. 91).

La suite de l'exposé est consacrée à la démonstration du théorème suivant

qui résout complètement le problème de Klein:

THÉORÈME 5.2. Les restrictions de Galois (si d 1 (mod 2) alors r > 1)

et de Rohlin (si a — 0 alors r > [^n-]) sont les seules contraintes sur les

invariants (<d, r, a) de Klein pour les courbes algébriques planes réelles lisses.

6. La génétique chez les courbes planes réelles

Avant de construire des courbes, notre problème exige une compréhension
du comportement de l'invariant a lorsque l'on «accouple» deux courbes

planes réelles lisses transverses en simplifiant tous leurs points d'intersection
à la Brusotti. A ce sujet, on a le résultat suivant dû à Fiedler (cf. [Fi], pp. 7-9) :
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