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COURBES RÉELLES 145

• Si en outre la courbe F est réelle, alors la courbe simplifiée A peut

aussi être choisie réelle, pour autant que chaque simplification d un nœud

imaginaire s'accompagne de celle du nœud imaginaire conjugué.

De plus chaque noeud réel (qu'il soit isolé ou non) admet deux modes de

simplifications (cf. Figure 6) que l'on peut prescrire de façon indépendante.

pour un nœud isolé

modèle local: je2 + y2 - (x + iy)(x - iy) 0
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pour un nœud non-isolé

modèle local: xy 0

Figure 6

4. Le théorème de Klein

La classification topologique des surfaces symétriques abstraites étant

effectuée, on se demande lesquelles proviennent de l'action de Galois sur

une courbe algébrique réelle. La réponse est donnée par le :

THÉORÈME 4.1 (Klein 1882). Toutes les surfaces symétriques sont
réalisables comme l'action de Galois sur une courbe algébrique réelle
irréductible et lisse.

Preuve. Il suffit de réaliser les modèles minimaux, puis de modéliser
«algébro-géométriquement» l'opération d'attachement d'une anse baguée.

• Réalisation des modèles minimaux.

On considère des courbes hyperelliptiques réelles Tq : y2 f(x) où f(x) est

un polynôme réel de degré 2g -f 2 ayant des racines distinctes. La normalisée
F de la courbe projective TcP2 associée à T0 est alors une courbe réelle
de genre g.

1. Si f(x) est choisi tel que f(x) < 0 Vx G R, alors_r0(R) est vide et
donc r(R) aussi. On obtient de la sorte (en considérant T) pour tout g une
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courbe non-séparante avec r — 0. Autrement dit pour toutes les valeurs du

genre, il existe une courbe réelle sans point réel.

2. Si f(x) est choisi tel que f(x) > 0 Vx G R, alors les fibres de la

projection 7r: T0 —> A1 sur l'axe des x au-dessus des points réels sont
exclusivement formées de points réels. Il en résulte que F est séparante. La

congruence de Klein entraîne alors que r g +1 (mod 2). Mais la restriction
de 7T : r —> P1 aux points réels induit un revêtement de degré 2 du cercle, et
donc r(F) vaut 1 ou 2. En particulier on voit que pour tout entier g pair, il
existe (avec F) une courbe séparante de genre g avec r ml.

• L'opération topologique d'attachement d'une anse baguée admet la
modélisation « algébro-géométrique » suivante :

Soient C une courbe réelle lisse et F C P2 un modèle R-birationnel plan
de C ayant au pire des singularités nodales. On choisit p G F \ T(R) un point
imaginaire lisse, de sorte que p admette un conjugué strict pa ^ p. On trace
alors la «sécante galoisienne» l := ppa, qui pour un choix générique de p
sera transverse à F. Une telle droite est définie sur R (car invariante par
Galois) et donc (/, a) est une sphère équatoriale.
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D'après Brusotti, on peut simplifier simultanément les points doubles p et

pa sur la courbe réductible F •1 0. On obtient ainsi A une courbe réelle

irréductible, dont la normalisée A se déduit topologiquement de C précisément

en attachant une anse baguée en deux points symétriques (cf. Figure 7).
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Figure 7
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