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COURBES REELLES 145

o Si en outre la courbe T est réelle, alors la courbe simplifiée A peut
aussi étre choisie réelle, pour autant que chaque simplification d’un naeud
imaginaire s’accompagne de celle du neeud imaginaire COnjugué.

De plus chaque noeud réel (qu’il soit isolé ou non) admet deux modes de
simplifications (cf. Figure 6) que I’on peut prescrire de fagon indépendante.

pour un nceud isolé pour un nceud non-isolé
modele local: x2 + y? = (x + iy)(x —iy) = 0 modele local: xy =0
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FIGURE 6

4. LE THEOREME DE KLEIN

La classification topologique des surfaces symétriques abstraites étant
effectuée, on se demande lesquelles proviennent de ’action de Galois sur
une courbe algébrique réelle. La réponse est donnée par le:

THEOREME 4.1 (Klein 1882). Toutes les surfaces symétriques sont
réalisables comme ['action de Galois sur une courbe algébrique réelle
irréductible et lisse.

Preuve. 11 suffit de réaliser les modeles minimaux, puis de modéliser
«algébro-géométriquement » 1’opération d’attachement d’une anse baguée.

e Réalisation des modeles minimaux.

On considére des courbes hyperelliptiques réelles T : y* = f(x) ot f(x) est
un polyndme réel de degré 2g +2 ayant des racines distinctes. La normalisée

I' de la courbe projective I' C P? associée a I’y est alors une courbe réelle
de genre g¢.

1. Si f(x) est choisi tel que f(x) < 0 Vx € R, alors~I“0(R) est vide et
donc I'(R) aussi. On obtient de la sorte (en considérant I') pour tout g une
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courbe non-séparante avec r = 0. Autrement dit pour toutes les valeurs du
genre, il existe une courbe réelle sans point réel.

2. Si f(x) est choisi tel que f(x) > 0 Vx € R, alors les fibres de la
projection m: Iy — A! sur I’axe des x au-dessus des points réels sont
exclusivement formées de points réels. Il en résulte que T est séparante. La
congruence de Klein entraine alors que r = g+ 1 (mod 2). Mais la restriction
de m: T — P! aux points réels induit un revétement de degré 2 du cercle, et
donc r(1~") vaut 1 ou 2. En particulier on voit que pour tout entier g pair, il
existe (avec f‘) une courbe séparante de genre g avec r = 1.

o L’opération topologique d’attachement d’une anse baguée admet la
modélisation «algébro-géométrique » suivante :

Soient C une courbe réelle lisse et I' C P? un modele R-birationnel plan
de C ayant au pire des singularités nodales. On choisit p € I"\ I'(R) un point
imaginaire lisse, de sorte que p admette un conjugué strict p % p. On trace
alors la «sécante galoisienne» [ := pp?, qui pour un choix générique de p
sera transverse a I'. Une telle droite est définie sur R (car invariante par
Galois) et donc (I,0) est une sphere équatoriale.
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FIGURE 7

D’apres Brusotti, on peut simplifier simultanément les points doubles p et
p® sur la courbe réductible I' -/ = 0. On obtient ainsi A une courbe réelle
irréductible, dont la normalisée A se déduit topologiquement de C précisement
en attachant une anse baguée en deux points symétriques (cf. Figure 7). [
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