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144 A. GABARD

2. Les séparantes, avec r 1 et donc g 0 (mod 2), se déduisent de

la sphère äquatoriale en lui attachant récursivement une paire d'oreilles (cf.
Figure 5).

Figure 5

3. Les petites déformations des courbes planes nodales

Notre outil principal est le théorème de Brusotti sur l'indépendance de

la simplification des nœuds points doubles ordinaires) des courbes planes
(cf. [Br] ou [BR], pp. 269-275). On va en faire un double usage.

• D'abord pour faire du plan P2 l'habitacle de «déformations»
explicites de courbes algébriques réelles, permettant en particulier de modéliser

l'opération clé (p,r, a) (gl,r+ l,a) pour la génération des surfaces

symétriques, et d'obtenir ainsi une preuve «purement projective» du théorème
de Klein relatif aux courbes «abstraites».

• Et ensuite comme outil de construction de courbes réelles lisses dans

le plan : la méthode consiste à se donner deux courbes réelles transverses
de petits degrés (typiquement des droites et des coniques) dont la topologie
est bien comprise, puis de «lissifier» la réunion de leurs parties réelles; le
théorème de Brusotti assure alors l'existence d'une courbe algébrique réelle
lisse dont la partie réelle réalise les lissifications prescrites. Cette remarquable
flexibilité graphique des courbes planes réelles nodales (qui est essentiellement

une conséquence du théorème de Riemann-Roch) va jouer un rôle crucial dans

la partie constructive du problème de Klein.

THÉORÈME 3.1 (Brusotti 1921). • Soit F C P2 une courbe plane de

degré d (non nécessairement irréductible) dont les seules singularités sont des

nœuds p\,... ,/?£. Alors pour tout choix de points doubles S C {p\,... ,ps}>
il existe une courbe plane À de même degré d voisine de T qui simplifie
les nœuds prescrits S et conserve les nœuds restants (modulo mouvements

infinitésimaux).
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• Si en outre la courbe F est réelle, alors la courbe simplifiée A peut

aussi être choisie réelle, pour autant que chaque simplification d un nœud

imaginaire s'accompagne de celle du nœud imaginaire conjugué.

De plus chaque noeud réel (qu'il soit isolé ou non) admet deux modes de

simplifications (cf. Figure 6) que l'on peut prescrire de façon indépendante.

pour un nœud isolé

modèle local: je2 + y2 - (x + iy)(x - iy) 0

V
naissance «

' "
j disparition du

d'un ovale y V, point réel isolé

o

pour un nœud non-isolé

modèle local: xy 0

Figure 6

4. Le théorème de Klein

La classification topologique des surfaces symétriques abstraites étant

effectuée, on se demande lesquelles proviennent de l'action de Galois sur

une courbe algébrique réelle. La réponse est donnée par le :

THÉORÈME 4.1 (Klein 1882). Toutes les surfaces symétriques sont
réalisables comme l'action de Galois sur une courbe algébrique réelle
irréductible et lisse.

Preuve. Il suffit de réaliser les modèles minimaux, puis de modéliser
«algébro-géométriquement» l'opération d'attachement d'une anse baguée.

• Réalisation des modèles minimaux.

On considère des courbes hyperelliptiques réelles Tq : y2 f(x) où f(x) est

un polynôme réel de degré 2g -f 2 ayant des racines distinctes. La normalisée
F de la courbe projective TcP2 associée à T0 est alors une courbe réelle
de genre g.

1. Si f(x) est choisi tel que f(x) < 0 Vx G R, alors_r0(R) est vide et
donc r(R) aussi. On obtient de la sorte (en considérant T) pour tout g une
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