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144 A. GABARD

2. Les séparantes, avec r = 1 et donc ¢ = 0 (mod 2), se déduisent de
la sphére équatoriale en lui attachant récursivement une paire d’oreilles (cf.

Figure 5).
G
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FIGURE 5

3. LES PETITES DEFORMATIONS DES COURBES PLANES NODALES

Notre outil principal est le théoréme de Brusotti sur I'indépendance de
la simplification des nceuds (= points doubles ordinaires) des courbes planes
(cf. [Br] ou [BR], pp.269-275). On va en faire un double usage.

e D’abord pour faire du plan P? [P’habitacle de «déformations» ex-
plicites de courbes algébriques réelles, permettant en particulier de modéliser
I’opération clé (g,r,a) — (g + 1,r + 1,a) pour la génération des surfaces
symétriques, et d’obtenir ainsi une preuve «purement projective » du théoréme
de Klein relatif aux courbes «abstraites ».

e Et ensuite comme outil de construction de courbes réelles lisses dans
le plan: la méthode consiste a se donner deux courbes réelles transverses
de petits degrés (typiquement des droites et des coniques) dont la topologie
est bien comprise, puis de «lissifier» la réunion de leurs parties réelles; le
théoreme de Brusotti assure alors I’existence d’une courbe algébrique réelle
lisse dont la partie réelle réalise les lissifications prescrites. Cette remarquable
flexibilité graphique des courbes planes réelles nodales (qui est essentiellement
une conséquence du théoréme de Riemann-Roch) va jouer un réle crucial dans
la partie constructive du probleme de Klein.

THEOREME 3.1 (Brusotti 1921). e Soit T' C P? une courbe plane de
degré d (non nécessairement irréductible) dont les seules singularités sont des
neeuds py,...,ps. Alors pour tout choix de points doubles S C {p1,...,ps},
il existe une courbe plane A de méme degré d voisine de 1" qui simplifie
les neeuds prescrits S et conserve les nceuds restants (modulo mouvements
infinitésimaux).




COURBES REELLES 145

o Si en outre la courbe T est réelle, alors la courbe simplifiée A peut
aussi étre choisie réelle, pour autant que chaque simplification d’un naeud
imaginaire s’accompagne de celle du neeud imaginaire COnjugué.

De plus chaque noeud réel (qu’il soit isolé ou non) admet deux modes de
simplifications (cf. Figure 6) que I’on peut prescrire de fagon indépendante.

pour un nceud isolé pour un nceud non-isolé
modele local: x2 + y? = (x + iy)(x —iy) = 0 modele local: xy =0
‘e X
naissance g ™~ disparition du ’S‘j L.{‘
d’un ovale [‘3 point réel isolé . ) \
) 7 . -

FIGURE 6

4. LE THEOREME DE KLEIN

La classification topologique des surfaces symétriques abstraites étant
effectuée, on se demande lesquelles proviennent de ’action de Galois sur
une courbe algébrique réelle. La réponse est donnée par le:

THEOREME 4.1 (Klein 1882). Toutes les surfaces symétriques sont
réalisables comme ['action de Galois sur une courbe algébrique réelle
irréductible et lisse.

Preuve. 11 suffit de réaliser les modeles minimaux, puis de modéliser
«algébro-géométriquement » 1’opération d’attachement d’une anse baguée.

e Réalisation des modeles minimaux.

On considére des courbes hyperelliptiques réelles T : y* = f(x) ot f(x) est
un polyndme réel de degré 2g +2 ayant des racines distinctes. La normalisée

I' de la courbe projective I' C P? associée a I’y est alors une courbe réelle
de genre g¢.

1. Si f(x) est choisi tel que f(x) < 0 Vx € R, alors~I“0(R) est vide et
donc I'(R) aussi. On obtient de la sorte (en considérant I') pour tout g une
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