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140 A GABARD

Ce problème fut reposé par Gross et Harris en 1981 (cf. [GrHa], p. 177). Il
revient à étudier les plongements possibles de C(R) dans une courbe plane C ;

alors que le plongement de C(R) dans P2(R) est la spécificité du 16e problème
de Hilbert. Ce dernier est ouvert pour les degrés d > 8, et l'objet du présent

exposé est de résoudre le problème de Klein pour tous les degrés.

L'exposé s'organise de la façon suivante:

• On commence par rappeler la classification topologique des surfaces

symétriques en termes de trois invariants : le genre, le nombre de composantes
fixes et l'alternative séparante ou non (la définition sera donnée au paragraphe
suivant). Ensuite on va exhiber une opération qui permet de construire
récursivement toutes les surfaces symétriques.

• Cette façon dynamique de penser aux surfaces symétriques va nous

permettre de redémontrer le théorème de Klein : simplement en effectuant une
«déformation» de courbes algébriques qui modélise l'opération topologique
susmentionnée. Pour ce faire, on invoquera un résultat de l'école italienne
dû à Brusotti, qui stipule que l'on peut «défaire» de façon indépendante les

nœuds d'une courbe plane dont les seules singularités sont nodales. Cette

preuve du théorème de Klein nous semble présenter l'avantage d'éviter tout
transit superflu par les surfaces de Riemann : on préfère travailler directement

sur leurs manifestations projectives.

• C'est alors seulement qu'on s'intéressera à la famille particularisée des

courbes planes lisses, et ce en rappelant certains travaux de Rohlin, desquels

résulte (entre autres) une restriction qui dit grosso modo qu'une courbe plane
séparante possède beaucoup de composantes.

• Ensuite, quelques variations autour d'une méthode classique de Hilbert

(originellement conçue pour la construction de courbes Harnack-maximales)

vont nous permettre de construire des courbes planes qui réalisent tous les

invariants non prohibés par Rohlin, obtenant ainsi une solution complète au

problème de Klein.

2. La classification topologique des surfaces symétriques

On va d'abord classer les surfaces symétriques (X, a) à homéomorphisme

équivariant près (c'est la relation naturelle vu qu'un morphisme défini sur R
entre variétés algébriques réelles est équivariant pour les actions de Galois). On

note g le genre de X et r le nombre de composantes de Fix(cr), l'ensemble
des points de X fixes par cr.
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Comme a renverse l'orientation, son action se linéarise au voisinage d'un

point p E Fix(cr) en une symétrie par rapport à une droite. Il en résulte que

Fix(cr) est une sous-variété compacte de X de dimension 1 (et donc une

réunion disjointe de cercles) et que le quotient par l'involution Y X/a
est une surface connexe à bord, dont le bord s'identifie à Fix(cr). (Le terme

«surface à bord» est à comprendre ici au sens large: on autorise le bord à

être vide, car il se peut très bien que a soit sans point fixe).

Inversement une surface à bord Y détermine une surface symétrique en

prenant son revêtement des orientations, d'où un dictionnaire entre surfaces

symétriques et surfaces à bord.

De plus en relevant sur X une triangulation du quotient F, on voit que

X(X) 2x00» car la projection X —» F est «plissée» le long des cercles

invariants de caractéristique d'Euler nulle.

LEMME 2.1. La surface privée des cercles invariants X\Fix(cr) a au plus
deux composantes connexes, et si elle en a deux elles sont échangées par a.

Preuve. Il suffit d'observer que la base du revêtement à 2 feuilles
X \ Fix(<j) —» Y \dY est connexe, ce qui résulte du fait qu'une surface

connexe à bord privée de son bord reste connexe.

PROPOSITION 2.2 (Borne de Harnack). Soit (X, a) une surface symétrique,
alors r < g + 1.

Preuve. L'argument suivant est de Klein (cf. [Kl], p.72). Par le lemme

précédent, la surface X privée de tous les cercles invariants sauf un est encore
connexe. Ainsi si r > g + 1, on pourrait effectuer g + 1 coupures sur X sans
la disconnecter, ce qui contredit la définition de Riemann du genre comme
étant le nombre maximal de coupures non disconnectantes.

Observer qu'un miroir sur une «somme connexe rectiligne» de g tores
fournit une surface symétrique réalisant la borne de Harnack (Figure 1).

Figure 1
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DÉFINITION (Klein). Une surface symétrique (X, a) est séparante (a 0)

si Fix(<r) disconnecte X, et non-séparante {a 1) sinon.

Notons qu'une surface symétrique avec r g + 1 cercles invariants, est

nécessairement séparante. C'est immédiat avec la définition de Riemann du

genre.

Observons aussi qu'une surface symétrique (X,a) est séparante si et
seulement si le quotient Y —X/a est orientable. En effet dans le cas séparant,
le quotient s'identifie à l'adhérence d'une des moitiés, et est donc orientable

car plongé dans X. La réciproque est claire si on raisonne avec le revêtement
des orientations.

PROPOSITION 2.3 (Congruence de Klein). Si (X, a) est séparante, alors

r g + 1 (mod 2).

Preuve. Le quotient Y est orientable et possède r composantes de bord, il
est donc le résultat de l'excision de r disques ouverts disjoints dans une surface

orientable sans bord de genre disons n > 0 ; par suite x(X) (2 — 2n) — r.
Or x(X) 2 — 2g, et la relation x(X) 2x(Y) donne 1— g 2 — 2n — r,
d'où r gJrl—2n gJrl (mod 2).

En se servant du dictionnaire entre surfaces symétriques et surfaces à bord,
et en se souvenant que ces dernières sont classées par 3 invariants qui sont la

caractéristique d'Euler, le nombre de composantes de bord et l'orientabilité,
on obtient le:

THÉORÈME 2.4 (Klein-Weichold). Deux surfaces symétriques sont équi-
homéomorphes si et seulement si elles ont mêmes invariants (g,r,a).

Nous allons montrer par des exemples que les restrictions recensées

jusqu'ici sur les invariants (g,r,a) sont les seules. Pour l'instant leurs valeurs

admissibles sont résumées par le diagramme des involutions (cf. Figure 2), qui

pour une valeur fixée du genre comporte 2 « étages » : le premier correspond

aux surfaces séparantes (a 0) et le second aux non-séparantes (a 1).

La combinatoire de ce diagramme (Figure 2) montre que l'opération
numérique (g, r, a) h* (g + 1, r-h 1, a) fournit un mode de génération exhaustif

des surfaces symétriques à partir des modèles minimaux symbolisés par des

«pastilles noires» sur la Figure 2.
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surface symétrique
minimale

Figure 2

Cette opération n'est autre que Y attachement d'une anse baguée, dont voici
la description: Soit (X,a) une surface symétrique d'invariants (g,r,a). On lui
attache une anse baguée basée en deux points symétriques distincts p et pa de

la surface (cf. Figure 3). On peut alors prolonger à l'anse l'involution donnée

sur X en fixant exactement la bague, d'où une nouvelle surface symétrique
d'invariants {g-Yl,r+ lf a). Noter que cette opération préserve bien l'invariant
a, car elle revient à faire un trou exciser un disque ouvert) dans le quotient,
ce qui préserve l'orientabilité.

Figure 3

Les surfaces symétriques minimales relativement à cette opération sont:
1. Les non-séparantes, avec r 0, qui s'obtiennent à partir de la sphère

antipodale et du tore antipodal en leur attachant récursivement une «paire
d'oreilles» (cf. Figure 4). En particulier on voit que, pour toutes les valeurs
du genre, il existe une surface symétrique sans point fixe.

Figure 4
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2. Les séparantes, avec r 1 et donc g 0 (mod 2), se déduisent de

la sphère äquatoriale en lui attachant récursivement une paire d'oreilles (cf.
Figure 5).

Figure 5

3. Les petites déformations des courbes planes nodales

Notre outil principal est le théorème de Brusotti sur l'indépendance de

la simplification des nœuds points doubles ordinaires) des courbes planes
(cf. [Br] ou [BR], pp. 269-275). On va en faire un double usage.

• D'abord pour faire du plan P2 l'habitacle de «déformations»
explicites de courbes algébriques réelles, permettant en particulier de modéliser

l'opération clé (p,r, a) (gl,r+ l,a) pour la génération des surfaces

symétriques, et d'obtenir ainsi une preuve «purement projective» du théorème
de Klein relatif aux courbes «abstraites».

• Et ensuite comme outil de construction de courbes réelles lisses dans

le plan : la méthode consiste à se donner deux courbes réelles transverses
de petits degrés (typiquement des droites et des coniques) dont la topologie
est bien comprise, puis de «lissifier» la réunion de leurs parties réelles; le
théorème de Brusotti assure alors l'existence d'une courbe algébrique réelle
lisse dont la partie réelle réalise les lissifications prescrites. Cette remarquable
flexibilité graphique des courbes planes réelles nodales (qui est essentiellement

une conséquence du théorème de Riemann-Roch) va jouer un rôle crucial dans

la partie constructive du problème de Klein.

THÉORÈME 3.1 (Brusotti 1921). • Soit F C P2 une courbe plane de

degré d (non nécessairement irréductible) dont les seules singularités sont des

nœuds p\,... ,/?£. Alors pour tout choix de points doubles S C {p\,... ,ps}>
il existe une courbe plane À de même degré d voisine de T qui simplifie
les nœuds prescrits S et conserve les nœuds restants (modulo mouvements

infinitésimaux).
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