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140 A GABARD

Ce probleme fut reposé par Gross et Harris en 1981 (cf. [GrHa], p. 177). Il
revient a étudier les plongements possibles de C(R) dans une courbe plane C;
alors que le plongement de C(R) dans P*(R) est la spécificité du 16¢ probléme
de Hilbert. Ce dernier est ouvert pour les degrés d > 8, et I’objet du présent
exposé est de résoudre le probleme de Klein pour tous les degrés.

L’exposé s’organise de la fagcon suivante:

e On commence par rappeler la classification topologique des surfaces
symétriques en termes de trois invariants : le genre, le nombre de composantes
fixes et I’alternative séparante ou non (la définition sera donnée au paragraphe
suivant). Ensuite on va exhiber une opération qui permet de construire
récursivement toutes les surfaces symétriques.

¢ Cette facon dynamique de penser aux surfaces symétriques va nous
permettre de redémontrer le théoreme de Klein: simplement en effectuant une
«déformation» de courbes algébriques qui modélise 1’opération topologique
susmentionnée. Pour ce faire, on invoquera un résultat de 1’école italienne
d a Brusotti, qui stipule que I’on peut «défaire» de fagon indépendante les
nceuds d’une courbe plane dont les seules singularités sont nodales. Cette
preuve du théoreme de Klein nous semble présenter ’avantage d’éviter tout
transit superflu par les surfaces de Riemann: on préfere travailler directement
sur leurs manifestations projectives.

e C’est alors seulement qu’on s’intéressera a la famille particularisée des
courbes planes lisses, et ce en rappelant certains travaux de Rohlin, desquels
résulte (entre autres) une restriction qui dit grosso modo qu’une courbe plane
séparante possede beaucoup de composantes.

e Ensuite, quelques variations autour d’une méthode classique de Hilbert
(originellement congue pour la construction de courbes Harnack-maximales)
vont nous permettre de construire des courbes planes qui réalisent tous les
invariants non prohibés par Rohlin, obtenant ainsi une solution complete au
probleme de Klein.

2. LA CLASSIFICATION TOPOLOGIQUE DES SURFACES SYMETRIQUES

On va d’abord classer les surfaces symétriques (X, o) a homéomorphisme
équivariant prés (c’est la relation naturelle vu qu’un morphisme défini sur R
entre variétés algébriques réelles est équivariant pour les actions de Galois). On
note g le genre de X et r le nombre de composantes de Fix(c), I’ensemble
des points de X fixes par o.
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Comme o renverse 1’orientation, son action se linéarise au voisinage d’un
point p € Fix(0) en une symétrie par rapport a une droite. Il en résulte que
Fix(c) est une sous-variété compacte de X de dimension 1 (et donc une
réunion disjointe de cercles) et que le quotient par I'involution ¥ = X /o
est une surface connexe a bord, dont le bord s’identifie a Fix(c). (Le terme
«surface & bord» est & comprendre ici au sens large: on autorise le bord a
étre vide, car il se peut trés bien que o soit sans point fixe).

Inversement une surface a bord Y détermine une surface symétrique en
prenant son revétement des orientations, d’ou un dictionnaire entre surfaces
symétriques et surfaces a bord.

De plus en relevant sur X une triangulation du quotient Y, on voit que
x(X) = 2x(Y), car la projection X — Y est «plissée» le long des cercles
invariants de caractéristique d’Euler nulle.

LEMME 2.1. La surface privée des cercles invariants X \ Fix(c) a au plus
deux composantes connexes, et si elle en a deux elles sont échangées par o .

Preuve. 11 suffit d’observer que la base du revétement a 2 feuilles
X \ Fix(c) — Y \ Y est connexe, ce qui résulte du fait qu'une surface
connexe a bord privée de son bord reste connexe. [

PROPOSITION 2.2 (Borne de Harnack). Soit (X, o) une surface symétrique,
alors r < g+ 1.

Preuve. L’argument suivant est de Klein (cf. [K1], p.72). Par le lemme
précédent, la surface X privée de tous les cercles invariants sauf un est encore
connexe. Ainsi si r > g-+1, on pourrait effectuer g+ 1 coupures sur X sans
la disconnecter, ce qui contredit la définition de Riemann du genre comme
étant le nombre maximal de coupures non disconnectantes. [

Observer qu’un miroir sur une «somme connexe rectiligne» de g tores
fournit une surface symétrique réalisant la borne de Harnack (Figure 1).

ey

FIGURE 1
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DEFINITION (Klein). Une surface symétrique (X, o) est séparante (a = 0)
si Fix(o) disconnecte X, et non-séparante (a = 1) sinon.

Notons qu’une surface symétrique avec r = g + 1 cercles invariants, est
nécessairement séparante. C’est immédiat avec la définition de Riemann du
genre.

Observons aussi qu’une surface symétrique (X,o0) est séparante si et
seulement si le quotient ¥ = X /o est orientable. En effet dans le cas séparant,
le quotient s’identifie a I’adhérence d’une des moitiés, et est donc orientable
car plongé dans X. La réciproque est claire si on raisonne avec le revétement
des orientations.

PROPOSITION 2.3 (Congruence de Klein). Si (X,0) est séparante, alors
r=g+1 (mod 2).

Preuve. Le quotient Y est orientable et possede r composantes de bord, il
est donc le résultat de 1’excision de r disques ouverts disjoints dans une surface
orientable sans bord de genre disons n > 0; par suite x(Y) =2 —2n) —r.
Or x(X) =2 —2g, et la relation x(X) =2x(Y) donne 1 —g=2—-2n—r,
dout r=g+1-2n=g+1 (mod2). O

En se servant du dictionnaire entre surfaces symétriques et surfaces a bord,
et en se souvenant que ces dernieres sont classées par 3 invariants qui sont la
caractéristique d’Euler, le nombre de composantes de bord et 1’orientabilité,
on obtient le:

THEOREME 2.4 (Klein-Weichold). Deux surfaces symétriques sont équi-
homéomorphes si et seulement si elles ont mémes invariants (g,r,a).

Nous allons montrer par des exemples que les restrictions recensées
jusqu’ici sur les invariants (g,r,a) sont les seules. Pour I’instant leurs valeurs
admissibles sont résumées par le diagramme des involutions (cf. Figure 2), qui
pour une valeur fixée du genre comporte 2 «€tages»: le premier correspond
aux surfaces séparantes (a = 0) et le second aux non-séparantes (a = 1).

La combinatoire de ce diagramme (Figure 2) montre que !’opération
numérique (g,r,a) — (¢g+1,r+1,a) fournit un mode de génération exhaustif
des surfaces symétriques a partir des modeles minimaux symbolisés par des
« pastilles noires» sur la Figure 2.
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FIGURE 2

Cette opération n’est autre que 1’attachement d’une anse baguée, dont voici
la description: Soit (X, o) une surface symétrique d’invariants (g, r,a). On lui
attache une anse baguée basée en deux points symétriques distincts p et p° de
la surface (cf. Figure 3). On peut alors prolonger a I’anse 1’involution donnée
sur X en fixant exactement la bague, d’ou une nouvelle surface symétrique
d’invariants (g+1,7+1,a). Noter que cette opération préserve bien I’invariant
a, car elle revient a faire un trou (= exciser un disque ouvert) dans le quotient,
ce qui préserve I’orientabilité.

FIGURE 3

Les surfaces symétriques minimales relativement a cette opération sont :

1. Les non-séparantes, avec r = 0, qui s’obtiennent a partir de la sphere
antipodale et du tore antipodal en leur attachant récursivement une «paire
d’oreilles » (cf. Figure 4). En particulier on voit que, pour toutes les valeurs
du genre, il existe une surface symétrique sans point fixe.

o)
~( CGB(ES

sphere antipodale tore antipodal

FIGURE 4
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2. Les séparantes, avec r = 1 et donc ¢ = 0 (mod 2), se déduisent de
la sphére équatoriale en lui attachant récursivement une paire d’oreilles (cf.

Figure 5).
G

sphére équatoriale U

FIGURE 5

3. LES PETITES DEFORMATIONS DES COURBES PLANES NODALES

Notre outil principal est le théoréme de Brusotti sur I'indépendance de
la simplification des nceuds (= points doubles ordinaires) des courbes planes
(cf. [Br] ou [BR], pp.269-275). On va en faire un double usage.

e D’abord pour faire du plan P? [P’habitacle de «déformations» ex-
plicites de courbes algébriques réelles, permettant en particulier de modéliser
I’opération clé (g,r,a) — (g + 1,r + 1,a) pour la génération des surfaces
symétriques, et d’obtenir ainsi une preuve «purement projective » du théoréme
de Klein relatif aux courbes «abstraites ».

e Et ensuite comme outil de construction de courbes réelles lisses dans
le plan: la méthode consiste a se donner deux courbes réelles transverses
de petits degrés (typiquement des droites et des coniques) dont la topologie
est bien comprise, puis de «lissifier» la réunion de leurs parties réelles; le
théoreme de Brusotti assure alors I’existence d’une courbe algébrique réelle
lisse dont la partie réelle réalise les lissifications prescrites. Cette remarquable
flexibilité graphique des courbes planes réelles nodales (qui est essentiellement
une conséquence du théoréme de Riemann-Roch) va jouer un réle crucial dans
la partie constructive du probleme de Klein.

THEOREME 3.1 (Brusotti 1921). e Soit T' C P? une courbe plane de
degré d (non nécessairement irréductible) dont les seules singularités sont des
neeuds py,...,ps. Alors pour tout choix de points doubles S C {p1,...,ps},
il existe une courbe plane A de méme degré d voisine de 1" qui simplifie
les neeuds prescrits S et conserve les nceuds restants (modulo mouvements
infinitésimaux).
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