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L'Enseignement Mathématique, t. 46 (2000), p. 139-161

TOPOLOGIE DES COURBES ALGÉBRIQUES RÉELLES :

UNE QUESTION DE FELIX KLEIN

par Alexandre Gabard

RÉSUMÉ. On étudie la topologie des courbes algébriques réelles selon le point de

vue de Klein, i.e. on s'intéresse au plongement de la partie réelle d'une courbe réelle
dans sa complexifiée. Le résultat principal est une caractérisation des plongements

possibles pour les courbes planes, obtenue en montrant qu'une restriction due à Rohlin
est essentiellement la seule. Ce résultat répond à une question posée par Klein, puis

par Gross et Harris.

1. Introduction

Une courbe algébrique projective complexe C CP" lisse et irréductible

est (pour la topologie transcendante) une surface connexe compacte orientable.

Si de plus C est réelle (i.e. définie par des équations à coefficients réels)
alors la conjugaison complexe a G Gal(C/R), par le biais de son action sur
Pn coordonnée par coordonnée, préserve globalement le lieu complexe C, en

fixant point par point l'ensemble des points réels que l'on notera C(R).
A la courbe réelle C est donc associée une surface symétrique (X, cr),

c'est-à-dire une surface connexe compacte orientable X munie d'une involution
continue a qui renverse l'orientation.

Felix Klein disposait non seulement de la classification topologique des

surfaces symétriques, mais savait aussi qu'elles sont toutes réalisables comme
l'action de Galois sur une courbe algébrique réelle. Cela étant, Klein se
demandait ce qu'il advient si l'on se restreint aux courbes planes (cf. [K3],
p. 155, note en bas de page); de façon précise:

PROBLÈME de Klein. Caractériser les surfaces symétriques qui admettent
un modèle comme l'action de Galois sur une courbe réelle lisse du plan.
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Ce problème fut reposé par Gross et Harris en 1981 (cf. [GrHa], p. 177). Il
revient à étudier les plongements possibles de C(R) dans une courbe plane C ;

alors que le plongement de C(R) dans P2(R) est la spécificité du 16e problème
de Hilbert. Ce dernier est ouvert pour les degrés d > 8, et l'objet du présent

exposé est de résoudre le problème de Klein pour tous les degrés.

L'exposé s'organise de la façon suivante:

• On commence par rappeler la classification topologique des surfaces

symétriques en termes de trois invariants : le genre, le nombre de composantes
fixes et l'alternative séparante ou non (la définition sera donnée au paragraphe
suivant). Ensuite on va exhiber une opération qui permet de construire
récursivement toutes les surfaces symétriques.

• Cette façon dynamique de penser aux surfaces symétriques va nous

permettre de redémontrer le théorème de Klein : simplement en effectuant une
«déformation» de courbes algébriques qui modélise l'opération topologique
susmentionnée. Pour ce faire, on invoquera un résultat de l'école italienne
dû à Brusotti, qui stipule que l'on peut «défaire» de façon indépendante les

nœuds d'une courbe plane dont les seules singularités sont nodales. Cette

preuve du théorème de Klein nous semble présenter l'avantage d'éviter tout
transit superflu par les surfaces de Riemann : on préfère travailler directement

sur leurs manifestations projectives.

• C'est alors seulement qu'on s'intéressera à la famille particularisée des

courbes planes lisses, et ce en rappelant certains travaux de Rohlin, desquels

résulte (entre autres) une restriction qui dit grosso modo qu'une courbe plane
séparante possède beaucoup de composantes.

• Ensuite, quelques variations autour d'une méthode classique de Hilbert

(originellement conçue pour la construction de courbes Harnack-maximales)

vont nous permettre de construire des courbes planes qui réalisent tous les

invariants non prohibés par Rohlin, obtenant ainsi une solution complète au

problème de Klein.

2. La classification topologique des surfaces symétriques

On va d'abord classer les surfaces symétriques (X, a) à homéomorphisme

équivariant près (c'est la relation naturelle vu qu'un morphisme défini sur R
entre variétés algébriques réelles est équivariant pour les actions de Galois). On

note g le genre de X et r le nombre de composantes de Fix(cr), l'ensemble
des points de X fixes par cr.
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Comme a renverse l'orientation, son action se linéarise au voisinage d'un

point p E Fix(cr) en une symétrie par rapport à une droite. Il en résulte que

Fix(cr) est une sous-variété compacte de X de dimension 1 (et donc une

réunion disjointe de cercles) et que le quotient par l'involution Y X/a
est une surface connexe à bord, dont le bord s'identifie à Fix(cr). (Le terme

«surface à bord» est à comprendre ici au sens large: on autorise le bord à

être vide, car il se peut très bien que a soit sans point fixe).

Inversement une surface à bord Y détermine une surface symétrique en

prenant son revêtement des orientations, d'où un dictionnaire entre surfaces

symétriques et surfaces à bord.

De plus en relevant sur X une triangulation du quotient F, on voit que

X(X) 2x00» car la projection X —» F est «plissée» le long des cercles

invariants de caractéristique d'Euler nulle.

LEMME 2.1. La surface privée des cercles invariants X\Fix(cr) a au plus
deux composantes connexes, et si elle en a deux elles sont échangées par a.

Preuve. Il suffit d'observer que la base du revêtement à 2 feuilles
X \ Fix(<j) —» Y \dY est connexe, ce qui résulte du fait qu'une surface

connexe à bord privée de son bord reste connexe.

PROPOSITION 2.2 (Borne de Harnack). Soit (X, a) une surface symétrique,
alors r < g + 1.

Preuve. L'argument suivant est de Klein (cf. [Kl], p.72). Par le lemme

précédent, la surface X privée de tous les cercles invariants sauf un est encore
connexe. Ainsi si r > g + 1, on pourrait effectuer g + 1 coupures sur X sans
la disconnecter, ce qui contredit la définition de Riemann du genre comme
étant le nombre maximal de coupures non disconnectantes.

Observer qu'un miroir sur une «somme connexe rectiligne» de g tores
fournit une surface symétrique réalisant la borne de Harnack (Figure 1).

Figure 1
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DÉFINITION (Klein). Une surface symétrique (X, a) est séparante (a 0)

si Fix(<r) disconnecte X, et non-séparante {a 1) sinon.

Notons qu'une surface symétrique avec r g + 1 cercles invariants, est

nécessairement séparante. C'est immédiat avec la définition de Riemann du

genre.

Observons aussi qu'une surface symétrique (X,a) est séparante si et
seulement si le quotient Y —X/a est orientable. En effet dans le cas séparant,
le quotient s'identifie à l'adhérence d'une des moitiés, et est donc orientable

car plongé dans X. La réciproque est claire si on raisonne avec le revêtement
des orientations.

PROPOSITION 2.3 (Congruence de Klein). Si (X, a) est séparante, alors

r g + 1 (mod 2).

Preuve. Le quotient Y est orientable et possède r composantes de bord, il
est donc le résultat de l'excision de r disques ouverts disjoints dans une surface

orientable sans bord de genre disons n > 0 ; par suite x(X) (2 — 2n) — r.
Or x(X) 2 — 2g, et la relation x(X) 2x(Y) donne 1— g 2 — 2n — r,
d'où r gJrl—2n gJrl (mod 2).

En se servant du dictionnaire entre surfaces symétriques et surfaces à bord,
et en se souvenant que ces dernières sont classées par 3 invariants qui sont la

caractéristique d'Euler, le nombre de composantes de bord et l'orientabilité,
on obtient le:

THÉORÈME 2.4 (Klein-Weichold). Deux surfaces symétriques sont équi-
homéomorphes si et seulement si elles ont mêmes invariants (g,r,a).

Nous allons montrer par des exemples que les restrictions recensées

jusqu'ici sur les invariants (g,r,a) sont les seules. Pour l'instant leurs valeurs

admissibles sont résumées par le diagramme des involutions (cf. Figure 2), qui

pour une valeur fixée du genre comporte 2 « étages » : le premier correspond

aux surfaces séparantes (a 0) et le second aux non-séparantes (a 1).

La combinatoire de ce diagramme (Figure 2) montre que l'opération
numérique (g, r, a) h* (g + 1, r-h 1, a) fournit un mode de génération exhaustif

des surfaces symétriques à partir des modèles minimaux symbolisés par des

«pastilles noires» sur la Figure 2.
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P o

9 1

9 2

9 3

0 1 2 3 4 5 6
H 1 1 1 1 1 h-

-- a - 1 (non-séparante)

- a 0 (séparante)

4 A 1

I a 0

H 1 1 1 1 1 h
0 1 2 3 4 5 6

surface symétrique
minimale

Figure 2

Cette opération n'est autre que Y attachement d'une anse baguée, dont voici
la description: Soit (X,a) une surface symétrique d'invariants (g,r,a). On lui
attache une anse baguée basée en deux points symétriques distincts p et pa de

la surface (cf. Figure 3). On peut alors prolonger à l'anse l'involution donnée

sur X en fixant exactement la bague, d'où une nouvelle surface symétrique
d'invariants {g-Yl,r+ lf a). Noter que cette opération préserve bien l'invariant
a, car elle revient à faire un trou exciser un disque ouvert) dans le quotient,
ce qui préserve l'orientabilité.

Figure 3

Les surfaces symétriques minimales relativement à cette opération sont:
1. Les non-séparantes, avec r 0, qui s'obtiennent à partir de la sphère

antipodale et du tore antipodal en leur attachant récursivement une «paire
d'oreilles» (cf. Figure 4). En particulier on voit que, pour toutes les valeurs
du genre, il existe une surface symétrique sans point fixe.

Figure 4
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2. Les séparantes, avec r 1 et donc g 0 (mod 2), se déduisent de

la sphère äquatoriale en lui attachant récursivement une paire d'oreilles (cf.
Figure 5).

Figure 5

3. Les petites déformations des courbes planes nodales

Notre outil principal est le théorème de Brusotti sur l'indépendance de

la simplification des nœuds points doubles ordinaires) des courbes planes
(cf. [Br] ou [BR], pp. 269-275). On va en faire un double usage.

• D'abord pour faire du plan P2 l'habitacle de «déformations»
explicites de courbes algébriques réelles, permettant en particulier de modéliser

l'opération clé (p,r, a) (gl,r+ l,a) pour la génération des surfaces

symétriques, et d'obtenir ainsi une preuve «purement projective» du théorème
de Klein relatif aux courbes «abstraites».

• Et ensuite comme outil de construction de courbes réelles lisses dans

le plan : la méthode consiste à se donner deux courbes réelles transverses
de petits degrés (typiquement des droites et des coniques) dont la topologie
est bien comprise, puis de «lissifier» la réunion de leurs parties réelles; le
théorème de Brusotti assure alors l'existence d'une courbe algébrique réelle
lisse dont la partie réelle réalise les lissifications prescrites. Cette remarquable
flexibilité graphique des courbes planes réelles nodales (qui est essentiellement

une conséquence du théorème de Riemann-Roch) va jouer un rôle crucial dans

la partie constructive du problème de Klein.

THÉORÈME 3.1 (Brusotti 1921). • Soit F C P2 une courbe plane de

degré d (non nécessairement irréductible) dont les seules singularités sont des

nœuds p\,... ,/?£. Alors pour tout choix de points doubles S C {p\,... ,ps}>
il existe une courbe plane À de même degré d voisine de T qui simplifie
les nœuds prescrits S et conserve les nœuds restants (modulo mouvements

infinitésimaux).
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• Si en outre la courbe F est réelle, alors la courbe simplifiée A peut

aussi être choisie réelle, pour autant que chaque simplification d un nœud

imaginaire s'accompagne de celle du nœud imaginaire conjugué.

De plus chaque noeud réel (qu'il soit isolé ou non) admet deux modes de

simplifications (cf. Figure 6) que l'on peut prescrire de façon indépendante.

pour un nœud isolé

modèle local: je2 + y2 - (x + iy)(x - iy) 0

V
naissance «

' "
j disparition du

d'un ovale y V, point réel isolé

o

pour un nœud non-isolé

modèle local: xy 0

Figure 6

4. Le théorème de Klein

La classification topologique des surfaces symétriques abstraites étant

effectuée, on se demande lesquelles proviennent de l'action de Galois sur

une courbe algébrique réelle. La réponse est donnée par le :

THÉORÈME 4.1 (Klein 1882). Toutes les surfaces symétriques sont
réalisables comme l'action de Galois sur une courbe algébrique réelle
irréductible et lisse.

Preuve. Il suffit de réaliser les modèles minimaux, puis de modéliser
«algébro-géométriquement» l'opération d'attachement d'une anse baguée.

• Réalisation des modèles minimaux.

On considère des courbes hyperelliptiques réelles Tq : y2 f(x) où f(x) est

un polynôme réel de degré 2g -f 2 ayant des racines distinctes. La normalisée
F de la courbe projective TcP2 associée à T0 est alors une courbe réelle
de genre g.

1. Si f(x) est choisi tel que f(x) < 0 Vx G R, alors_r0(R) est vide et
donc r(R) aussi. On obtient de la sorte (en considérant T) pour tout g une
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courbe non-séparante avec r — 0. Autrement dit pour toutes les valeurs du

genre, il existe une courbe réelle sans point réel.

2. Si f(x) est choisi tel que f(x) > 0 Vx G R, alors les fibres de la

projection 7r: T0 —> A1 sur l'axe des x au-dessus des points réels sont
exclusivement formées de points réels. Il en résulte que F est séparante. La

congruence de Klein entraîne alors que r g +1 (mod 2). Mais la restriction
de 7T : r —> P1 aux points réels induit un revêtement de degré 2 du cercle, et
donc r(F) vaut 1 ou 2. En particulier on voit que pour tout entier g pair, il
existe (avec F) une courbe séparante de genre g avec r ml.

• L'opération topologique d'attachement d'une anse baguée admet la
modélisation « algébro-géométrique » suivante :

Soient C une courbe réelle lisse et F C P2 un modèle R-birationnel plan
de C ayant au pire des singularités nodales. On choisit p G F \ T(R) un point
imaginaire lisse, de sorte que p admette un conjugué strict pa ^ p. On trace
alors la «sécante galoisienne» l := ppa, qui pour un choix générique de p
sera transverse à F. Une telle droite est définie sur R (car invariante par
Galois) et donc (/, a) est une sphère équatoriale.

C

ruz

A

A

D'après Brusotti, on peut simplifier simultanément les points doubles p et

pa sur la courbe réductible F •1 0. On obtient ainsi A une courbe réelle

irréductible, dont la normalisée A se déduit topologiquement de C précisément

en attachant une anse baguée en deux points symétriques (cf. Figure 7).

surface symétrique

p projection sous-jacente
1dans le plan

s simplification
de p,pa

b

normalisationi
kS\S\J-**

\S\f\r*-

~*cy o
formation
de pinces

Figure 7
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5. Le problème de Klein: description des prohibitions

Pour une courbe plane lisse C C P2, le genre est g où d

désigne le degré de la courbe C. On va donc se restreindre aux genres de

cette forme, et il devient maintenant commode de substituer aux invariants

(p,r, <2) les invariants (d,r,a).
Pour les degrés d impairs, une courbe plane réelle a toujours des points

réels; si bien qu'il est impossible de réaliser la surface symétrique sans point
fixe. Je me référerai à cette restriction sous le terme de restriction de Galois.

Ensuite comme conséquence des travaux de Klein sur le dénombrement
des caractéristiques-theta réelles impaires (cf. [K2]), Gross et Harris ont mis

en évidence une restriction plus subtile : si d 5 (mod 8) (auquel cas g 0

(mod 2)), alors il n'existe pas de courbe plane séparante avec r — 1 (cf.
[GrHa], Prop. 7.1, p. 173). Noter pourtant qu'une telle surface symétrique
existe abstraitement puisque g est pair (cf. Figure 8). Ainsi déjà en degré 5,
les courbes planes présentent des lacunes vis-à-vis des invariants (,d, r, a) :

impossibilité de fabriquer une quintique (plane réelle lisse) séparante n'ayant
qu'une composante.

Figure 8

En fait on a une restriction beaucoup plus forte due à Rohlin (cf. [Ma],
p. 59):

THÉORÈME 5.1 (Inégalité de Rohlin). Si C est une courbe plane réelle
lisse séparante de degré d, alors r > [^^].

Preuve. Etant donné une courbe séparante C, Rohlin observe que la partie
réelle C(R) admet deux orientations de signes opposés comme bord des moitiés
de C \ C(R) et parle d'orientations complexes. En supposant maintenant la
courbe plane, il compare pour chaque paire d'ovales emboîtés, les orientations
complexes de ses deux ovales à celles comme bord des orientations de l'anneau
délimité par la paire dans P2(R). Lorsque ces orientations coïncident il parle
d une paire positive, et dans le cas contraire d'une paire négative, et note fl-*-
et fi" leur nombre respectif. En calculant l'intersection dans P2(C) des deux
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moitiés (rebouchées par les adhérences des intérieurs des ovales) il obtient la
formule :

(1) 2(n+ — IT)

où k | et où l'on suppose le degré pair (le cas des degrés impairs
nécessite une discussion parallèle effectuée par Mishachev [Mi]). Pour plus
de détails on renvoie à [RI], où la formule (1) est démontrée dans le cas

particulier des courbes Harnack-maximales (aussi appelées M-courbes), et

pour l'énoncé général, on consultera [R2], p. 91.

Ensuite il est purement formel à partir de la formule de Rohlin (1) de

déduire l'inégalité de Rohlin. En effet, si IT n+ + El- désigne le nombre
total de paires d'ovales emboîtés, on a n < Q, et alors d'après (1):

r k2 + 2(n+ - n") > fc2 - 21T > £2 - 211 > /c2 - 2 k1 — r(r — 1).

En se concentrant sur les membres extrêmes, on en tire r2 > k2, et donc

r >k. Ce qui est précisément l'inégalité de Rohlin pour d pair. On laisse au

soin du lecteur, la tâche analogue pour les degrés impairs en utilisant cette

fois la formule de Mishachev (cf. [R2], p. 91).

La suite de l'exposé est consacrée à la démonstration du théorème suivant

qui résout complètement le problème de Klein:

THÉORÈME 5.2. Les restrictions de Galois (si d 1 (mod 2) alors r > 1)

et de Rohlin (si a — 0 alors r > [^n-]) sont les seules contraintes sur les

invariants (<d, r, a) de Klein pour les courbes algébriques planes réelles lisses.

6. La génétique chez les courbes planes réelles

Avant de construire des courbes, notre problème exige une compréhension
du comportement de l'invariant a lorsque l'on «accouple» deux courbes

planes réelles lisses transverses en simplifiant tous leurs points d'intersection
à la Brusotti. A ce sujet, on a le résultat suivant dû à Fiedler (cf. [Fi], pp. 7-9) :
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THÉORÈME (Fiedler 1978). Soient C\, C2 deux courbes planes de degrés

respectifs d\,di réelles, lisses et transverses, et C une courbe réelle lisse de

degré d d\ + ^2 voisine de C\ • C2 0 qui simplifie (de façon non-précisée

pour V instant) tous les points doubles de Cj C% 0.

• Il suffit qu'une des deux courbes C\ ou C2 soit non-séparante, pour

que la courbe C le soit, et ce indépendamment des simplifications effectuées.

Autrement dit en termes génétiques, « non-séparant » est un caractère dominant.

• Si par contre les courbes C\ et C2 sont de caractères récessifs,

c'est-à-dire séparantes, et si en outre tous les d\ • ^2 points d'intersection

de Cj avec C2 sont réels (cette condition pourra être satisfaite dans les

constructions à venir) alors, d'après Brusotti, la courbe C\ • C2 0 peut
être simplifiée de 2dydl façons distinctes, mais parmi tous ces choix de

simplifications, exactement deux livrent des courbes séparantes, à savoir celui

qui est toujours positif respectivement toujours négatif, relativement à des

orientations complexes fixées de C\ et C2 - De plus pour un tel choix de

simplifications dicté par les orientations complexes, l'orientation complexe de

la courbe simplifiée C se déduit par transfert de celle de l'un de ses deux

parents.

Preuve. Seule la seconde assertion nécessite une explication. La
simplification de chaque nœud de C\ C2 0 (qui sont tous réels et non-isolés)
revient à attacher une anse contenant deux brins réels sur l'union disjointe de

Ci avec C2. Cette anse privée des brins réels relie une moitié de Ci avec

une moitié de C2 (ainsi que les moitiés conjuguées correspondantes). Ainsi

pour que la courbe simplifiée C soit séparante, il faut (et il suffit) que toutes
les simplifications effectuées correspondent à des attachements d'anses reliant
systématiquement les mêmes moitiés. Ainsi notre seule liberté, si on aspire à

fabriquer une courbe C séparante, réside dans le choix des deux moitiés que
l'on relie initialement, et il est clair que l'on dispose de deux tels choix.

7. LE PROBLÈME DE KLEIN: CONSTRUCTION DE COURBES

On va commencer par traiter le cas des degrés pairs, le cas des degrés
impairs admettera ensuite un traitement similaire. Les constructions qu'on va
entreprendre se décomposent en les étapes suivantes :

Etape 0. On commence par s'entraîner avec les petits degrés d 2,4.
Étape 1. On rappelle la méthode de Hilbert de construction de courbes

Harnack-maximales.
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Étape 2. Ensuite en vertu de Brusotti, on va explorer d'autres choix de

simplifications qui vont livrer des courbes non-séparantes avec moins d'ovales.

Etape 3. On disposera alors déjà d'un système d'invariants permettant
d'attraper toutes les non-séparantes, via une opération simple qui consiste à

rajouter une petite conique.

Etape 4. A ce stade, il nous restera à réaliser les courbes séparantes

non prohibées par Rohlin, qui s'obtiendront en exploitant les 2 choix de

simplifications compatibles avec les orientations complexes.

Etape 5. Enfin, en répertoriant les invariants ainsi réalisés, on constatera

qu'il nous manque encore quelques invariants non prohibés par Rohlin, que
l'on attrapera cependant par de petites constructions «ad hoc».

7.1 Les courbes de degré pair

Étape 0. • Pour d 2 on a g 0, et il n'y a alors que deux surfaces

symétriques qui sont la sphère équatoriale et antipodale, respectivement
réalisées par x2 -h y2 1 et x2 + y2 — 1.

Observer plus généralement que x4 + yd —1 livre les invariants

(d, r 0,1) pour tout d pair.

• Pour d 4, on considère une paire de coniques réelles C2 U £2 C P2

s'intersectant en 4 points réels, que l'on peut déformer en les quartiques
réelles lisses de la Figure 9. D'après Fiedler la première et la dernière de ces

courbes (que Klein appelait la Gürtelkurve) sont séparantes (les simplifications
effectuées étant compatibles avec les orientations complexes) et toutes les autres

sont non-séparantes.

Figure 9
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En se souvenant des 6 surfaces symétriques de genre g — 3 (cf. Figure 2),

on observe que pour d — 4 il n'y a pas de restrictions aux invariants de

Klein.

Remarque. Un argument plus synthétique pour révéler le caractère

séparant de la Gürtelkurve, consiste à regarder le pinceau des droites passant

par un point p réel choisi le plus à l'intérieur du nid (cf. Figure 9). Ce pinceau

jouit de la propriété remarquable que tous ses membres réels (qui sont des

droites réelles par p) découpent sur C4 exclusivement des points réels. Le

morphisme correspondant C4 —> P1 est donc saturé, i.e. ses fibres au-dessus

des points réels sont toutes exclusivement formées de points réels. Par suite,

il envoie les points imaginaires de C4 sur des points imaginaires du pinceau

qui s'identifie à une sphère équatoriale. Cette dernière étant séparante, il en

résulte que C4 l'est aussi.

Ce même argument montre plus généralement que la borne inférieure de

Rohlin est toujours réalisée, i.e. pour tout degré d il existe une courbe plane
réelle lisse séparante avec r — [^jn-] composantes. En effet, en perturbant un

peu une réunion de k cercles concentriques, on peut obtenir une courbe Q
lisse de degré pair d — 2k avec r — k composantes. Une telle courbe est

séparante (il suffit comme plus haut de considérer le pinceau des droites par
un point choisi le plus à l'intérieur du nid). Pour les degrés impairs, il suffit
de rajouter à la configuration précédente une droite réelle «à l'infini» (et de
lissifier le tout).

Etape 1. Rappelons maintenant la méthode de Hilbert de construction de
M-courbes (cf. [Gu], p. 20) qui s'effectue séparément suivant la parité du
degré.

Considérons deux coniques réelles C2 et E2 s'intersectant en 4 points réels

PuP2,P3,P4, et C4° une quartique voisine avec r 4. Soit d4 ss lx • l2 • l3 l4
une quartique réunion de 4 droites réelles intersectant chacune l'arc de E2(R)
délimité par px et p2 en 2 points (cf. Figure 10), et considérons alors
C4 := Cl + £$4 0 où £ désigne un petit nombre réel.

Cette petite perturbation a pour effet de faire «vibrer» un des ovales de
notre quartique relativement à la conique E2 (cf. Figure 10). On applique
ensuite Brusotti à la courbe C4 • E2 0 et le choix de simplifications de
la Figure 10 fournit une courbe lisse C6 qui possède r 4 + (3 + 4) 11

ovales, ce qui est la borne de Harnack pour d — 6.
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La méthode de Hilbert peut se schématiser par le dessin de la Figure 11,

et en exploitant les 2 choix de simplifications de C4 • E2 0 compatibles
avec des orientations complexes on obtient deux courbes séparantes avec

r 4-F(3+4) ll et r 4 + 1 5 respectivement (cf. Figure 11).

REMARQUE. Noter ici qu'il n'est même pas nécessaire de connaître

explicitement l'orientation complexe de C4, vu que l'intersection C4 D E2

est monopolisée par un seul ovale de C4. Il suffit d'orienter (arbitrairement)
les ovales de C4(R) et de ^(R) se rencontrant, et ces orientations locales

(i.e. d'un ovale sur chaque courbe) se prolongeront univoquement en des

orientations complexes des ovales restants, mais qu'il est inutile d'expliciter
vu qu'elles n'influenceront pas le choix de simplifications.

Étape 2. L'observation importante est maintenant qu'en faisant varier le

choix des simplifications de la courbe C4 • E2 0 de la Figure 11 (ce qui est

loisible d'après Brusotti), on peut aussi obtenir les courbes de la Figure 12, qui
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v/\z-*~

Figure 11

sont toutes non-séparantes (les deux choix séparants ayant déjà été exploités).
Observer que l'invariant r diminue successivement d'une unité r ~

10,9,...,4 jusqu'à atteindre la borne de Harnack relative au degré pair
précédent. Je parle de grignotage d'ovales dans une M-courbe de Hilbert.

Figure 12

On itère ensuite la construction de Hilbert en faisant vibrer un ovale de
la M-courbe Ce de la Figure 11, ce qui fournit une nouvelle courbe Ce de
degré 6 qui oscille à travers E2 au voisinage de l'ovale excité (cf. Figure 13).
Ensuite en simplifiant les points doubles de Ce • E2 — 0, on peut obtenir la
courbe C8 de degré 8 de la Figure 13, qui possède r 11 -h (5 + 6) 22
ovales.
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Figure 13

Remarque. On observe que l'on rajoute toujours à l'invariant r deux

entiers consécutifs, ce qui permet de se convaincre que les courbes Cd

construites par Hilbert réalisent bien toujours la borne de Harnack, puisque

r 1 + 2) + (3 + 4) + • • • + (d— 3) + — 2) + 1 + j + i.

Faisons le point sur le diagramme des involutions (restreint aux degrés pairs)
des valeurs des invariants (<i, r, a) obtenus par cette méthode de grignotage
dans une M-courbe de Hilbert (cf. Figure 14).

d 9 0 1 2 3 4 5 10
1 1 1 1 1 1 1 I f t

15 20 r
i î î 1 î I i —V —ir-

2 0

H- — "f 1

o

o

1 1 1 1 1 1 1 1 1 1

jû l
l a 0

I I I 1 I f 1 1 I 1

grignotage d'ovales

4 3 \ o
* "K

\ •
\ collage d'une petite conique

S

6 10

o o o

\ ° \

t ^

\ ° \ \ ° \ ** ° \ \ ° \ •

8 21

V - ^
o o o

o

\ \ \ 1 \ \ \ 1 ^

o o o o o \O O O 0 •

Figure 14

Cette méthode fournit des courbes non-séparantes Cd avec un invariant r
décroissant successivement d'une unité jusqu'à atteindre la borne de Harnack

relative au degré pair précédent, i.e. M(d — 2) g(d — 2) + 1.
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Étape 3. Ensuite étant donné une courbe non-séparante Cd, on peut toujours

lui rajouter une petite conique C2, c'est-à-dire une conique réelle, ayant des

points réels, mais de partie réelle disjointe de celle de Q et (de complexifiée)

transverse à Cd - La courbe Cd • C2 0 possède alors 2d nœuds imaginaires

conjugués dont la simplification fournit une courbe Cd+2 non-séparante (« non-

séparant» étant un caractère dominant) et qui possède un ovale de plus que la

courbe donnée, i.e. r(Q+2) — KQ) +1 • On baptise cette opération le collage

d'une petite conique.

Remarque. Pour fabriquer une telle petite conique, il suffit de choisir

un point p de P2(R) n'appartenant pas à Q(R) et de perturber un peu le

produit d'une droite imaginaire l passant par p et transverse à Q avec sa

droite conjuguée F de sorte que le point réel isolé p de la conique dégénérée

l F — 0 se transforme en un petit ovale autour de p. On peut déjà observer

que cette opération s'appliquera également lorsque d sera impair.

Ainsi il est aisé (au niveau des courbes non-séparantes) de réaliser

l'opération (d, r, 1) 1— (d+2, r+1,1)- D'autre part, comme les non-séparantes

avec r — 0 s'obtiennent en considérant l'équation Xe1 -\-yd — 1, on constate

avec satisfaction en contemplant le diagramme des involutions (cf. Figure 14),

que l'on dispose déjà d'un système de courbes non-séparantes permettant,

moyennant itération successive de l'opération de collage d'une petite conique,
d'attraper toutes les courbes non-séparantes restantes. Ceci montre qu'en degré

pair tous les invariants des courbes non-séparantes sont réalisables dans le plan.

Etape 4. A ce stade il ne nous reste plus qu'à construire les courbes

séparantes non prohibées par Rohlin, i.e. avec r tel que :

L'idée pour attraper d'autres valeurs intermédiaires de r consiste à appliquer
la même technique de vibration d'un ovale, mais cette fois à une courbe
séparante non nécessairement Harnack-maximale.

Explicitement, au lieu de démarrer avec une M-courbe de degré 4, on
considère la quartique C4 de la Figure 15 avec (d,r,a) (4,2,0). On peut
faire vibrer un ovale de C4 relativement à E2 (cf. Figure 15), et les 2 choix
de simplifications de C4 • E2 0 compatibles avec des orientations complexes
livrent des courbes séparantes avec r 2 + (3 + 4) 9 et r 2 + 1 3

respectivement (cf. Figure 15).

^<r< g(d) + 1
(d - 1) (d - 2)

2
+ 1 et r g(d) + 1 (mod 2)
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Figure 15

Plus généralement, la même technique (de vibration d'un ovale de Cd

relativement à une conique génératrice E2, suivie des 2 simplifications de

Cd E2 0 compatibles avec des orientations complexes) permet de construire
à partir d'une courbe d'invariants (d, r, 0) deux courbes séparantes d'invariants

(d + 2, r + 2d — 1,0) et (d + 2, r + 1,0) avec r croissant respectivement à

la vitesse de la borne de Harnack (lissification maximale) et à vitesse 1

(lissification atténuée).

Figure 16
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Visualisons les invariants ainsi réalisés sur le diagramme des involutions

(cf. Figure 16). On observe que pour d — 8, les lissifications atténuées et

maximales effectuent une «jonction» (cf. Figure 16), qui ne fera que s'accroître

pour les degrés supérieurs. Ce qui garantit que l'on a mis la main sur presque
tous les invariants Rohlin-admissibles pour les courbes séparantes.

Etape 5. On note cependant que pour d 6, il nous manque encore
la courbe d'invariants (d, r, <2) (6,7,0) qui échappe à cette méthode. Il
n'est cependant pas difficile d'imaginer une petite construction «ad hoc»
qui colmate cette lacune éphémère. On considère à cet effet la configuration
de 3 coniques transverses de la Figure 17, dont la déformation proposée
fournit la courbe Ce manquante d'invariants (d, r, a) (6,7,0). (Noter que
c'est l'unique endroit dans tout l'argument où il est nécessaire de connaître

explicitement une orientation complexe).

En résumé nous avons démontré:

Théorème 7.1. Pour les courbes planes réelles lisses de degré pair, la
restriction de Rohlin est la seule sur les invariants (d,r,a).

7.2 Les courbes de degré impair

Il nous reste à traiter le cas des courbes de degré impair; les valeurs
admissibles des invariants (d,r,a) sont alors résumées par la Figure 18.

A nouveau on utilise la méthode de Hilbert, qui pour les degrés impairs
démarre avec Ci une droite réelle et E2 une conique réelle rencontrant Ci
en deux points réels. La déformation de Ci • E2 0 de la Figure 19 fournit
une M-courbe C3 de degré 3.

Ensuite on construit une M-courbe C5 de degré 5 en faisant vibrer une
des composantes de C3, ce qui fournit une nouvelle cubique C3 oscillant

Figure 17
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Figure 18

relativement à la conique génératrice £2 (cf. Figure 19). La simplification
dessinée des points doubles de C3 £2 0 fournit la M-courbe C5 cherchée.

Ensuite la même technique de grignotage des ovales nouveau-nés dans une
M-courbe de Hilbert, fournit des courbes non-séparantes avec un invariant r
décroissant successivement d'une unité jusqu'à atteindre la borne de Harnack
relative au degré impair précédent, i.e. M(d — 2). Les invariants {d, r, a)
ainsi réalisés sont schématisés par des flèches sur la Figure 18. Ensuite en

complétant la famille des courbes ainsi obtenues avec les courbes de Fermât
de degré impair Fd : ^ +yd 1 qui ont r — 1 et qui sont non-séparantes pour
d > 3 (d'après l'inégalité de Rohlin par exemple), on met à nouveau la main

sur un système de courbes permettant d'engendrer toutes les non-séparantes

via l'opération de collage d'une petite conique. Ainsi la restriction de Galois

est la seule pour les courbes non-séparantes de degré impair.

Figure 19

Pour les séparantes, la même méthode qu'avant fournit les invariants

délimités par la ligne en tirets sur le diagramme des involutions (cf. Figure 18).

On observe cette fois que l'on manque deux invariants Rohlin-admissibles,
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à savoir (d,r,à) (5,5,0) et (d,r,a)(7,10,0): le premier s'obtient

en rajoutant une droite à une courbe d'invariants (4,4,0), puis en

simplifiant de façon compatible avec les orientations complexes (cf. Figure 20).

Figure 20

Le second s'obtient de la même manière à partir de la courbe de la

Figure 15 d'invariants (d,r,à) — (6,9,0) (cf. Figure 21).

Figure 21

En résumé nous avons démontré:

THÉORÈME 7.2. Pour les courbes planes réelles lisses de degré impair, les

restrictions de Galois et de Rohlin sont les seules sur les invariants (<d, r, a).

Cela résout donc complètement le problème de Klein de la caractérisation
des surfaces symétriques réalisables comme courbes réelles lisses dans le plan.

t.-
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