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TOPOLOGIE DES COURBES ALGEBRIQUES REELLES:
UNE QUESTION DE FELIX KLEIN

par Alexandre GABARD

RESUME. On étudie la topologie des courbes algébriques réelles selon le point de
vue de Klein, i.e. on s’intéresse au plongement de la partie réelle d’une courbe réelle
dans sa complexifiée. Le résultat principal est une caractérisation des plongements
possibles pour les courbes planes, obtenue en montrant qu’une restriction due a Rohlin
est essentiellement la seule. Ce résultat répond a une question posée par Klein, puis
par Gross et Harris.

1. INTRODUCTION

Une courbe algébrique projective complexe C C P" lisse et irréductible
est (pour la topologie transcendante) une surface connexe compacte orientable.
Si de plus C est réelle (i.e. définie par des €quations a coefficients réels)
alors la conjugaison complexe o € Gal(C/R), par le biais de son action sur
P" coordonnée par coordonnée, préserve globalement le lieu complexe C, en
fixant point par point I’ensemble des points réels que I’on notera C(R).

A la courbe réelle C est donc associée une surface symétrique (X,0),
c’est-a-dire une surface connexe compacte orientable X munie d’une involution
continue ¢ qui renverse l’orientation. |

Felix Klein disposait non seulement de la classification topologique des
surfaces symétriques, mais savait aussi qu’elles sont toutes réalisables comme
I’action de Galois sur une courbe algébrique réelle. Cela étant, Klein se
demandait ce qu’il advient si ’on se restreint aux courbes planes (cf. [K3],
p. 155, note en bas de page); de facon précise:

PROBLEME DE KLEIN. Caractériser les surfaces symétriques qui admettent
un modele comme 'action de Galois sur une courbe réelle lisse du plan.
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Ce probleme fut reposé par Gross et Harris en 1981 (cf. [GrHa], p. 177). Il
revient a étudier les plongements possibles de C(R) dans une courbe plane C;
alors que le plongement de C(R) dans P*(R) est la spécificité du 16¢ probléme
de Hilbert. Ce dernier est ouvert pour les degrés d > 8, et I’objet du présent
exposé est de résoudre le probleme de Klein pour tous les degrés.

L’exposé s’organise de la fagcon suivante:

e On commence par rappeler la classification topologique des surfaces
symétriques en termes de trois invariants : le genre, le nombre de composantes
fixes et I’alternative séparante ou non (la définition sera donnée au paragraphe
suivant). Ensuite on va exhiber une opération qui permet de construire
récursivement toutes les surfaces symétriques.

¢ Cette facon dynamique de penser aux surfaces symétriques va nous
permettre de redémontrer le théoreme de Klein: simplement en effectuant une
«déformation» de courbes algébriques qui modélise 1’opération topologique
susmentionnée. Pour ce faire, on invoquera un résultat de 1’école italienne
d a Brusotti, qui stipule que I’on peut «défaire» de fagon indépendante les
nceuds d’une courbe plane dont les seules singularités sont nodales. Cette
preuve du théoreme de Klein nous semble présenter ’avantage d’éviter tout
transit superflu par les surfaces de Riemann: on préfere travailler directement
sur leurs manifestations projectives.

e C’est alors seulement qu’on s’intéressera a la famille particularisée des
courbes planes lisses, et ce en rappelant certains travaux de Rohlin, desquels
résulte (entre autres) une restriction qui dit grosso modo qu’une courbe plane
séparante possede beaucoup de composantes.

e Ensuite, quelques variations autour d’une méthode classique de Hilbert
(originellement congue pour la construction de courbes Harnack-maximales)
vont nous permettre de construire des courbes planes qui réalisent tous les
invariants non prohibés par Rohlin, obtenant ainsi une solution complete au
probleme de Klein.

2. LA CLASSIFICATION TOPOLOGIQUE DES SURFACES SYMETRIQUES

On va d’abord classer les surfaces symétriques (X, o) a homéomorphisme
équivariant prés (c’est la relation naturelle vu qu’un morphisme défini sur R
entre variétés algébriques réelles est équivariant pour les actions de Galois). On
note g le genre de X et r le nombre de composantes de Fix(c), I’ensemble
des points de X fixes par o.
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Comme o renverse 1’orientation, son action se linéarise au voisinage d’un
point p € Fix(0) en une symétrie par rapport a une droite. Il en résulte que
Fix(c) est une sous-variété compacte de X de dimension 1 (et donc une
réunion disjointe de cercles) et que le quotient par I'involution ¥ = X /o
est une surface connexe a bord, dont le bord s’identifie a Fix(c). (Le terme
«surface & bord» est & comprendre ici au sens large: on autorise le bord a
étre vide, car il se peut trés bien que o soit sans point fixe).

Inversement une surface a bord Y détermine une surface symétrique en
prenant son revétement des orientations, d’ou un dictionnaire entre surfaces
symétriques et surfaces a bord.

De plus en relevant sur X une triangulation du quotient Y, on voit que
x(X) = 2x(Y), car la projection X — Y est «plissée» le long des cercles
invariants de caractéristique d’Euler nulle.

LEMME 2.1. La surface privée des cercles invariants X \ Fix(c) a au plus
deux composantes connexes, et si elle en a deux elles sont échangées par o .

Preuve. 11 suffit d’observer que la base du revétement a 2 feuilles
X \ Fix(c) — Y \ Y est connexe, ce qui résulte du fait qu'une surface
connexe a bord privée de son bord reste connexe. [

PROPOSITION 2.2 (Borne de Harnack). Soit (X, o) une surface symétrique,
alors r < g+ 1.

Preuve. L’argument suivant est de Klein (cf. [K1], p.72). Par le lemme
précédent, la surface X privée de tous les cercles invariants sauf un est encore
connexe. Ainsi si r > g-+1, on pourrait effectuer g+ 1 coupures sur X sans
la disconnecter, ce qui contredit la définition de Riemann du genre comme
étant le nombre maximal de coupures non disconnectantes. [

Observer qu’un miroir sur une «somme connexe rectiligne» de g tores
fournit une surface symétrique réalisant la borne de Harnack (Figure 1).

ey

FIGURE 1
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DEFINITION (Klein). Une surface symétrique (X, o) est séparante (a = 0)
si Fix(o) disconnecte X, et non-séparante (a = 1) sinon.

Notons qu’une surface symétrique avec r = g + 1 cercles invariants, est
nécessairement séparante. C’est immédiat avec la définition de Riemann du
genre.

Observons aussi qu’une surface symétrique (X,o0) est séparante si et
seulement si le quotient ¥ = X /o est orientable. En effet dans le cas séparant,
le quotient s’identifie a I’adhérence d’une des moitiés, et est donc orientable
car plongé dans X. La réciproque est claire si on raisonne avec le revétement
des orientations.

PROPOSITION 2.3 (Congruence de Klein). Si (X,0) est séparante, alors
r=g+1 (mod 2).

Preuve. Le quotient Y est orientable et possede r composantes de bord, il
est donc le résultat de 1’excision de r disques ouverts disjoints dans une surface
orientable sans bord de genre disons n > 0; par suite x(Y) =2 —2n) —r.
Or x(X) =2 —2g, et la relation x(X) =2x(Y) donne 1 —g=2—-2n—r,
dout r=g+1-2n=g+1 (mod2). O

En se servant du dictionnaire entre surfaces symétriques et surfaces a bord,
et en se souvenant que ces dernieres sont classées par 3 invariants qui sont la
caractéristique d’Euler, le nombre de composantes de bord et 1’orientabilité,
on obtient le:

THEOREME 2.4 (Klein-Weichold). Deux surfaces symétriques sont équi-
homéomorphes si et seulement si elles ont mémes invariants (g,r,a).

Nous allons montrer par des exemples que les restrictions recensées
jusqu’ici sur les invariants (g,r,a) sont les seules. Pour I’instant leurs valeurs
admissibles sont résumées par le diagramme des involutions (cf. Figure 2), qui
pour une valeur fixée du genre comporte 2 «€tages»: le premier correspond
aux surfaces séparantes (a = 0) et le second aux non-séparantes (a = 1).

La combinatoire de ce diagramme (Figure 2) montre que !’opération
numérique (g,r,a) — (¢g+1,r+1,a) fournit un mode de génération exhaustif
des surfaces symétriques a partir des modeles minimaux symbolisés par des
« pastilles noires» sur la Figure 2.
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01 2 3 456 r

l b a = 1 (non-séparante)
g="0 . I a = 0 (séparante)

e o I a=1
g=1 ° a=0

g=2 . o e = surface symétrique
minimale
[ ] o] (o] o]
9= 3 o) o r
01 2 3 4 5 6
FIGURE 2

Cette opération n’est autre que 1’attachement d’une anse baguée, dont voici
la description: Soit (X, o) une surface symétrique d’invariants (g, r,a). On lui
attache une anse baguée basée en deux points symétriques distincts p et p° de
la surface (cf. Figure 3). On peut alors prolonger a I’anse 1’involution donnée
sur X en fixant exactement la bague, d’ou une nouvelle surface symétrique
d’invariants (g+1,7+1,a). Noter que cette opération préserve bien I’invariant
a, car elle revient a faire un trou (= exciser un disque ouvert) dans le quotient,
ce qui préserve I’orientabilité.

FIGURE 3

Les surfaces symétriques minimales relativement a cette opération sont :

1. Les non-séparantes, avec r = 0, qui s’obtiennent a partir de la sphere
antipodale et du tore antipodal en leur attachant récursivement une «paire
d’oreilles » (cf. Figure 4). En particulier on voit que, pour toutes les valeurs
du genre, il existe une surface symétrique sans point fixe.

o)
~( CGB(ES

sphere antipodale tore antipodal

FIGURE 4
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2. Les séparantes, avec r = 1 et donc ¢ = 0 (mod 2), se déduisent de
la sphére équatoriale en lui attachant récursivement une paire d’oreilles (cf.

Figure 5).
G

sphére équatoriale U

FIGURE 5

3. LES PETITES DEFORMATIONS DES COURBES PLANES NODALES

Notre outil principal est le théoréme de Brusotti sur I'indépendance de
la simplification des nceuds (= points doubles ordinaires) des courbes planes
(cf. [Br] ou [BR], pp.269-275). On va en faire un double usage.

e D’abord pour faire du plan P? [P’habitacle de «déformations» ex-
plicites de courbes algébriques réelles, permettant en particulier de modéliser
I’opération clé (g,r,a) — (g + 1,r + 1,a) pour la génération des surfaces
symétriques, et d’obtenir ainsi une preuve «purement projective » du théoréme
de Klein relatif aux courbes «abstraites ».

e Et ensuite comme outil de construction de courbes réelles lisses dans
le plan: la méthode consiste a se donner deux courbes réelles transverses
de petits degrés (typiquement des droites et des coniques) dont la topologie
est bien comprise, puis de «lissifier» la réunion de leurs parties réelles; le
théoreme de Brusotti assure alors I’existence d’une courbe algébrique réelle
lisse dont la partie réelle réalise les lissifications prescrites. Cette remarquable
flexibilité graphique des courbes planes réelles nodales (qui est essentiellement
une conséquence du théoréme de Riemann-Roch) va jouer un réle crucial dans
la partie constructive du probleme de Klein.

THEOREME 3.1 (Brusotti 1921). e Soit T' C P? une courbe plane de
degré d (non nécessairement irréductible) dont les seules singularités sont des
neeuds py,...,ps. Alors pour tout choix de points doubles S C {p1,...,ps},
il existe une courbe plane A de méme degré d voisine de 1" qui simplifie
les neeuds prescrits S et conserve les nceuds restants (modulo mouvements
infinitésimaux).
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o Si en outre la courbe T est réelle, alors la courbe simplifiée A peut
aussi étre choisie réelle, pour autant que chaque simplification d’un naeud
imaginaire s’accompagne de celle du neeud imaginaire COnjugué.

De plus chaque noeud réel (qu’il soit isolé ou non) admet deux modes de
simplifications (cf. Figure 6) que I’on peut prescrire de fagon indépendante.

pour un nceud isolé pour un nceud non-isolé
modele local: x2 + y? = (x + iy)(x —iy) = 0 modele local: xy =0
‘e X
naissance g ™~ disparition du ’S‘j L.{‘
d’un ovale [‘3 point réel isolé . ) \
) 7 . -

FIGURE 6

4. LE THEOREME DE KLEIN

La classification topologique des surfaces symétriques abstraites étant
effectuée, on se demande lesquelles proviennent de ’action de Galois sur
une courbe algébrique réelle. La réponse est donnée par le:

THEOREME 4.1 (Klein 1882). Toutes les surfaces symétriques sont
réalisables comme ['action de Galois sur une courbe algébrique réelle
irréductible et lisse.

Preuve. 11 suffit de réaliser les modeles minimaux, puis de modéliser
«algébro-géométriquement » 1’opération d’attachement d’une anse baguée.

e Réalisation des modeles minimaux.

On considére des courbes hyperelliptiques réelles T : y* = f(x) ot f(x) est
un polyndme réel de degré 2g +2 ayant des racines distinctes. La normalisée

I' de la courbe projective I' C P? associée a I’y est alors une courbe réelle
de genre g¢.

1. Si f(x) est choisi tel que f(x) < 0 Vx € R, alors~I“0(R) est vide et
donc I'(R) aussi. On obtient de la sorte (en considérant I') pour tout g une
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courbe non-séparante avec r = 0. Autrement dit pour toutes les valeurs du
genre, il existe une courbe réelle sans point réel.

2. Si f(x) est choisi tel que f(x) > 0 Vx € R, alors les fibres de la
projection m: Iy — A! sur I’axe des x au-dessus des points réels sont
exclusivement formées de points réels. Il en résulte que T est séparante. La
congruence de Klein entraine alors que r = g+ 1 (mod 2). Mais la restriction
de m: T — P! aux points réels induit un revétement de degré 2 du cercle, et
donc r(1~") vaut 1 ou 2. En particulier on voit que pour tout entier g pair, il
existe (avec f‘) une courbe séparante de genre g avec r = 1.

o L’opération topologique d’attachement d’une anse baguée admet la
modélisation «algébro-géométrique » suivante :

Soient C une courbe réelle lisse et I' C P? un modele R-birationnel plan
de C ayant au pire des singularités nodales. On choisit p € I"\ I'(R) un point
imaginaire lisse, de sorte que p admette un conjugué strict p % p. On trace
alors la «sécante galoisienne» [ := pp?, qui pour un choix générique de p
sera transverse a I'. Une telle droite est définie sur R (car invariante par
Galois) et donc (I,0) est une sphere équatoriale.

&
s
¢

surface symétrique ‘
projection sous-jacente % formation
dans le plan de pinces
p p )
rul (VAVAV.J @ o
24 f2ad W
. . attachement
simplification Q@
anses

de p,p°

>
Q§
NZY,
Q)
]
'y

o gommage
<ii';\(v)lrmahsatlom des pinces

\,I

FIGURE 7

D’apres Brusotti, on peut simplifier simultanément les points doubles p et
p® sur la courbe réductible I' -/ = 0. On obtient ainsi A une courbe réelle
irréductible, dont la normalisée A se déduit topologiquement de C précisement
en attachant une anse baguée en deux points symétriques (cf. Figure 7). [
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5. LE PROBLEME DE KLEIN: DESCRIPTION DES PROHIBITIONS
Pour une courbe plane lisse C C P?, le genre est g = g;l_)_z(d_—g, ou d
désigne le degré de la courbe C. On va donc se restreindre aux genres de
cette forme, et il devient maintenant commode de substituer aux invariants
(g,r,a) les invariants (d,r,a).

Pour les degrés d impairs, une courbe plane réelle a toujours des points
réels; si bien qu’il est impossible de réaliser la surface symétrique sans point
fixe. Je me référerai a cette restriction sous le terme de restriction de Galois.

Ensuite comme conséquence des travaux de Klein sur le dénombrement
des caractéristiques-theta réelles impaires (cf. [K2]), Gross et Harris ont mis
en évidence une restriction plus subtile: st d =5 (mod 8) (auquel cas g =0
(mod 2)), alors il n’existe pas de courbe plane séparante avec r = 1 (cf.
[GrHa], Prop.7.1, p.173). Noter pourtant qu’'une telle surface symétrique
existe abstraitement puisque g est pair (cf. Figure 8). Ainsi déja en degré 5,
les courbes planes présentent des lacunes vis-a-vis des invariants (d,r,aq) :
impossibilité de fabriquer une quintique (plane réelle lisse) séparante n’ayant
qu’une composante.

FIGURE 8

En fait on a une restriction beaucoup plus forte due a Rohlin (cf. [Ma],
p-59):

THEOREME 5.1 (Inégalité de Rohlin). Si C est une courbe plane réelle
lisse séparante de degré d, alors r > [dJZL—l].

Preuve. Etant donné une courbe séparante C, Rohlin observe que la partie
réelle C(R) admet deux orientations de signes opposés comme bord des moitiés
de C\ C(R) et parle d’orientations complexes. En supposant maintenant la
courbe plane, il compare pour chaque paire d’ovales emboités, les orientations
complexes de ses deux ovales a celles comme bord des orientations de 1I’anneau
délimité par la paire dans P?(R). Lorsque ces orientations coincident il parle
d’une paire positive, et dans le cas contraire d’une paire négative, et note IT+
et I~ leur nombre respectif. En calculant 1’intersection dans P2(C) des deux
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moitié€s (rebouchées par les adhérences des intérieurs des ovales) il obtient la
formule :

(1) 2t —IT7) =r — &
ou k = % et ou ’on suppose le degré d pair (le cas des degrés impairs
nécessite une discussion parallele effectuée par Mishachev [Mi]). Pour plus
de détails on renvoie a [R1], ou la formule (1) est démontrée dans le cas
particulier des courbes Harnack-maximales (aussi appelées M -courbes), et
pour I’énoncé général, on consultera [R2], p.91.

Ensuite il est purement formel a partir de la formule de Rohlin (1) de
déduire I’inégalité de Rohlin. En effet, si IT = ITT + I~ désigne le nombre
total de paires d’ovales emboités, on a Il < (;) , et alors d’apres (1):

r:k2+2(H+—H“)2kz—2H‘2k2—2H2k2—2(;) =k —r(r—1).

En se concentrant sur les membres extrémes, on en tire 7> > k*, et donc
r > k. Ce qui est précisement 1’inégalité de Rohlin pour d pair. On laisse au
soin du lecteur, la tiche analogue pour les degrés impairs en utilisant cette
fois la formule de Mishachev (cf. [R2], p.91). [

La suite de ’exposé est consacrée a la démonstration du théoréme suivant
qui résout completement le probleme de Klein:

THEOREME 5.2. Les restrictions de Galois (si d =1 (mod 2) alors r > 1)
et de Rohlin (si a = 0 alors r > [d—"z*—l] ) sont les seules contraintes sur les
invariants (d,r,a) de Klein pour les courbes algébriques planes réelles lisses.

6. LA GENETIQUE CHEZ LES COURBES PLANES REELLES

Avant de construire des courbes, notre probléme exige une compréhension
du comportement de l’invariant a lorsque ’on «accouple» deux courbes
planes réelles lisses transverses en simplifiant tous leurs points d’intersection
a la Brusotti. A ce sujet, on a le résultat suivant di a Fiedler (cf. [Fil, pp. 7-9) :
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THEOREME (Fiedler 1978). Soient C;, C, deux courbes planes de degrés
respectifs di,d, réelles, lisses et transverses, et C une courbe réelle lisse de
degré d = di +d, voisine de Cy-C, =0 qui simplifie (de fagon non-précisée
pour instant) tous les points doubles de Cy-Cp = 0.

e Il suffit qu'une des deux courbes Cy ou C, soit non-séparante, pour
que la courbe C le soit, et ce indépendamment des simplifications effectuées.
Autrement dit en termes génétiques, « non-séparant » est un caractere dominant.

e Si par contre les courbes Cy et C, sont de caractéres récessifs,
c’est-a-dire séparantes, et si en outre tous les dy - d, points d’intersection
de Ci avec C, sont réels (cette condition pourra étre satisfaite dans les
constructions a venir) alors, d’aprés Brusotti, la courbe C, - C, = 0 peut
étre simplifiée de 2%% facons distinctes, mais parmi tous ces choix de
simplifications, exactement deux livrent des courbes séparantes, a savoir celui
qui est toujours positif, respectivement toujours négatif, relativement a des
orientations complexes fixées de Ci et C,. De plus pour un tel choix de
simplifications dicté par les orientations complexes, 1’orientation complexe de
la courbe simplifiée C se déduit par transfert de celle de 'un de ses deux
parents.

Preuve. Seule la seconde assertion nécessite une explication. La simpli-
fication de chaque nceud de C; - C; = 0 (qui sont tous réels et non-isolés)
revient a attacher une anse contenant deux brins réels sur ’union disjointe de
Ci; avec (C,. Cette anse privée des brins réels relie une moitié de C; avec
une moiti€é de C, (ainsi que les moiti€s conjuguées correspondantes). Ainsi
pour que la courbe simplifiée C soit séparante, il faut (et il suffit) que toutes
les simplifications effectuées correspondent a des attachements d’anses reliant
systématiquement les mémes moitiés. Ainsi notre seule liberté, si on aspire a
fabriquer une courbe C séparante, réside dans le choix des deux moiti€s que
I’on relie initialement, et il est clair que ’on dispose de deux tels choix. [

7. LE PROBLEME DE KLEIN: CONSTRUCTION DE COURBES

On va commencer par traiter le cas des degrés pairs, le cas des degrés
impairs admettera ensuite un traitement similaire. Les constructions qu’on va
entreprendre se décomposent en les étapes suivantes :

Etape 0. On commence par s’entrainer avec les petits degrés d = 2, 4.

Etape 1. On rappelle la méthode de Hilbert de construction de courbes
Harnack-maximales.
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Etape 2. Ensuite en vertu de Brusotti, on va explorer d’autres choix de
simplifications qui vont livrer des courbes non-séparantes avec moins d’ovales.

E‘tape 3. On disposera alors déja d’un systeme d’invariants permettant
d’attraper toutes les non-séparantes, via une opération simple qui consiste a
rajouter une petite conique.

Etape 4. A ce stade, il nous restera a réaliser les courbes séparantes
non prohibées par Rohlin, qui s’obtiendront en exploitant les 2 choix de
simplifications compatibles avec les orientations complexes.

Etape 5. Enfin, en répertoriant les invariants ainsi réalisés, on constatera
qu’il nous manque encore quelques invariants non prohibés par Rohlin, que
I’on attrapera cependant par de petites constructions «ad hoc».

7.1 LES COURBES DE DEGRE PAIR

Etape 0. « Pour d =2 on a g =0, et il n’y a alors que deux surfaces
symétriques qui sont la sphere équatoriale et antipodale, respectivement
réalisées par x* +y* =1 et x* +y* = —1.

Observer plus généralement que x% + y¢ = —1 livre les invariants
(d,r=0,1) pour tout d pair.

e Pour d =4, on considére une paire de coniques réelles C, U E; C P?
s’intersectant en 4 points réels, que ’on peut déformer en les quartiques
réelles lisses de la Figure 9. D’aprés Fiedler la premiere et la derniere de ces
courbes (que Klein appelait la Giirtelkurve) sont séparantes (les simplifications
effectuées étant compatibles avec les orientations complexes) et toutes les autres
sont non-séparantes. |

Giinelkurve

KLY
e \VZ%a

<A
séparante

"""""""""""

séparante

FIGURE 9
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En se souvenant des 6 surfaces symétriques de genre g = 3 (cf. Figure 2),
on observe que pour d = 4 il n’y a pas de restrictions aux invariants de

Klein.

REMARQUE. Un argument plus synthétique pour réveler le caracteére
séparant de la Giirtelkurve, consiste a regarder le pinceau des droites passant
par un point p réel choisi le plus a I'intérieur du nid (cf. Figure 9). Ce pinceau
jouit de la propriété remarquable que tous ses membres réels (qui sont des
droites réelles par p) découpent sur C4 exclusivement des points réels. Le
morphisme correspondant C; — P! est donc saturé, i.e. ses fibres au-dessus
des points réels sont toutes exclusivement formées de points réels. Par suite,
il envoie les points imaginaires de C, sur des points imaginaires du pinceau
qui s’identifie a2 une sphere équatoriale. Cette derniere étant séparante, il en
résulte que C4 ’est aussi.

Ce méme argument montre plus généralement que la borne inférieure de
Rohlin est toujours réalisée, i.e. pour tout degré d il existe une courbe plane
réelle lisse séparante avec r = [%ﬂ] composantes. En effet, en perturbant un
peu une réunion de k cercles concentriques, on peut obtenir une courbe Cj
lisse de degré pair d = 2k avec r = k composantes. Une telle courbe est
séparante (il suffit comme plus haut de considérer le pinceau des droites par
un point choisi le plus a I'intérieur du nid). Pour les degrés impairs, il suffit
de rajouter a la configuration précédente une droite réelle «a 1’infini» (et de
lissifier le tout).

Etape 1. Rappelons maintenant la méthode de Hilbert de construction de
M-courbes (cf. [Gu], p.20) qui s’effectue séparément suivant la parité du
degré.

Considérons deux coniques réelles C, et E, s’intersectant en 4 points réels
P1,P2,P3,Pa, et Cj une quartique voisine avec r = 4. Soit ¥4 = I bl
une quartique réunion de 4 droites réelles intersectant chacune 1’arc de E,(R)
délimité par p; et p, en 2 points (cf. Figure 10), et considérons alors
Cyq == C,? +ev4 =0 ou € désigne un petit nombre réel.

Cette petite perturbation a pour effet de faire «vibrer» un des ovales de
notre quartique Cj relativement 2 la conique E, (cf. Figure 10). On applique
ensuite Brusotti a la courbe C4 - E, = 0 et le choix de simplifications de
la Figure 10 fournit une courbe lisse Cs qui posséde r = 4 + 3+4) =11
ovales, ce qui est la borne de Harnack pour d = 6.
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La méthode de Hilbert peut se schématiser par le dessin de la Figure 11,
et en exploitant les 2 choix de simplifications de Cy4 - E; = 0 compatibles
avec des orientations complexes on obtient deux courbes séparantes avec
r=4+4+3+4+4)=11 et r=4+1=>5 respectivement (cf. Figure 11).

REMARQUE. Noter ici qu’il n’est méme pas nécessaire de connaitre
explicitement l’orientation complexe de Cs, vu que l'intersection C; N E,
est monopolisée par un seul ovale de C,. Il suffit d’orienter (arbitrairement)
les ovales de C4(R) et de E,(R) se rencontrant, et ces orientations locales
(i.e. d’un ovale sur chaque courbe) se prolongeront univoquement en des
orientations complexes des ovales restants, mais qu’il est inutile d’expliciter
vu qu’elles n’influenceront pas le choix de simplifications.

Etape 2. L’observation importante est maintenant qu’en faisant varier le
choix des simplifications de la courbe C4-E; = 0 de la Figure 11 (ce qui est
loisible d’apres Brusotti), on peut aussi obtenir les courbes de la Figure 12, qui
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FIGURE 11

sont toutes non-séparantes (les deux choix séparants ayant déja été exploités).
Observer que l’invariant r diminue successivement d’une unité r =

10,9,...,4 jusqu’a atteindre la borne de Harnack relative au degré pair

précédent. Je parle de grignotage d’ovales dans une M -courbe de Hilbert.

0 0
OO OOD 6

N

&

FIGURE 12

On itere ensuite la construction de Hilbert en faisant vibrer un ovale de
la M-courbe Cs de la Figure 11, ce qui fournit une nouvelle courbe Cg de
degré 6 qui oscille a travers E; au voisinage de ’ovale excité (cf. Figure 13).
Ensuite en simplifiant les points doubles de Cg - E, = 0, on peut obtenir la

courbe Cg de degré 8 de la Figure 13, qui posséde r = 11 + (5 + 6) = 22
ovales.
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FIGURE 13

REMARQUE. On observe que 1’on rajoute toujours a 1’invariant r deux
entiers consécutifs, ce qui permet de se convaincre que les courbes C,
construites par Hilbert réalisent bien toujours la borne de Harnack, puisque
r=(1+)+@+dD+-+@d-3)+d-2)+1=EED 11 -g41.

Faisons le point sur le diagramme des involutions (restreint aux degrés pairs)
des valeurs des invariants (d,r,a) obtenus par cette méthode de grignotage
dans une M -courbe de Hilbert (cf. Figure 14).

d|lglo 1 2 3 45 10 15 20 r
1 1 L] 1 1 1 1 1 1 —1 3 ] } 1 1 1 1 ) ] El 1 | -
1 T T T i T ¥ T T T I ¥ ¥ I T [ 0 T { I T T |
o a= . 5
2 0 . = grignotage d’ovales
o a=0
0 ee—ow—o % , . .
RN . = collage d’une petite conique
4 3 Yo% Le X
e
o] o o o .-4—.-4—.4—.4—.4—.4—.‘ x
6 10 3, ;
\ O o o% Yo o J
e S S J RS JE JaE U AR R
o o le] o o o o o o] o (o] G O O 4 04— 04— 04— 04— 0 40 4040
8 21
o o [¢] (o} o o} o] o o o [ ] !
|
FIGURE 14 ]

Cette méthode fournit des courbes non-séparantes C; avec un invariant r
décroissant successivement d’une unité jusqu’a atteindre la borne de Harnack
relative au degré pair précédent, i.e. M(d —2) =g(d —2) + 1.
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Etape 3. Ensuite étant donné une courbe non-séparante C,, on peut toujours
lui rajouter une petite conique C,, c’est-a-dire une conique réelle, ayant des
points réels, mais de partie réelle disjointe de celle de Cy et (de complexifiée)
transverse & Cy. La courbe C;-C, = 0 posséde alors 2d nceuds imaginaires
conjugués dont la simplification fournit une courbe Cgy42 non-séparante («non-
séparant» étant un caractére dominant) et qui posseéde un ovale de plus que la
courbe donnée, i.e. r(Cyq2) = r(Cy)+ 1. On baptise cette opération le collage
d’une petite conique.

REMARQUE. Pour fabriquer une telle petite conique, il suffit de choisir
un point p de P*(R) n’appartenant pas 2 C4(R) et de perturber un peu le
produit d’une droite imaginaire ! passant par p et transverse a Cy avec sa
droite conjuguée [ de sorte que le point réel isolé p de la conique dégénérée
[-1° =0 se transforme en un petit ovale autour de p. On peut déja observer
que cette opération s’appliquera également lorsque d sera impair.

Ainsi il est aisé (au niveau des courbes non-séparantes) de réaliser
I’opération (d,r,1) — (d+2,r+1,1). D’autre part, comme les non-séparantes
avec r = 0 s’obtiennent en considérant 1’équation x* +y¢ = —1, on constate
avec satisfaction en contemplant le diagramme des involutions (cf. Figure 14),
que l’on dispose déja d’un systtme de courbes non-séparantes permettant,
moyennant itération successive de 1’opération de collage d’une petite conique,
d’attraper toutes les courbes non-sé€parantes restantes. Ceci montre qu’en degré
pair tous les invariants des courbes non-séparantes sont réalisables dans le plan.

Etape 4. A ce stade il ne nous reste plus qu’a construire les courbes
séparantes non prohibées par Rohlin, i.e. avec r tel que:

d—-1)(d—-2)
5 +

g—grgg(d)+1: 1 et r=g(d)+1 (mod?2).

L’idé€e pour attraper d’autres valeurs intermédiaires de r consiste a appliquer
la. méme technique de vibration d’un ovale, mais cette fois a une courbe
séparante non nécessairement Harnack-maximale.

Explicitement, au lieu de démarrer avec une M -courbe de degré 4, on
considere la quartique C, de la Figure 15 avec (d,r,a) = (4,2,0). On peut
faire vibrer un ovale de C4 relativement & E, (cf. Figure 15), et les 2 choix
de simplifications de C4-E; = 0 compatibles avec des orientations complexes
livrent des courbes séparantes avec r =2+ B3 +4) =9 et r=24+1 = 3
respectivement (cf. Figure 15).
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Plus généralement, la méme technique (de vibration d’un ovale de Cy
relativement 2 une conique génératrice E,, suivie des 2 simplifications de
C,-E, = 0 compatibles avec des orientations complexes) permet de construire
a partir d’une courbe d’invariants (d, r,0) deux courbes séparantes d’invariants
d+2,r+2d—1,0) et (d+2,r+ 1,0) avec r croissant respectivement a
la vitesse de la borne de Harnack (lissification maximale) et a vitesse 1
(lissification atténuée).

d g 0 1 2 3 4 5 10 15 2 r
——t—t— >
2ol ° ]t =1 O restriction de Rohlin
o =0
(o] o] o] o]
4 3
® [
S
[o] o] [e] Q o] [e] o
6 10
- —
o] (o] [o] o] [o] (o] (o] (s} [e] (o) o] o]
8 21
o} [ ] [] [ [ [ . ° [ [
[ ~ — \ ~— 4
lissification atténuée lissification maximale

FIGURE 16 ﬁ
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Visualisons les invariants ainsi réalisés sur le diagramme des involutions
(cf. Figure 16). On observe que pour d = 8, les lissifications atténuées et
maximales effectuent une «jonction» (cf. Figure 16), qui ne fera que s’accroitre
pour les degrés supérieurs. Ce qui garantit que I’on a mis la main sur presque
tous les invariants Rohlin-admissibles pour les courbes séparantes.

Etape 5. On note cependant que pour d = 6, il nous manque encore
la courbe d’invariants (d,r,a) = (6,7,0) qui échappe a cette méthode. Il
n’est cependant pas difficile d’imaginer une petite construction «ad hoc»
qui colmate cette lacune éphémere. On considére a cet effet la configuration
de 3 coniques transverses de la Figure 17, dont la déformation proposée
fournit la courbe Cs manquante d’invariants (d,r,a) = (6,7,0). (Noter que
c’est I’unique endroit dans tout I’argument ou il est nécessaire de connaitre
explicitement une orientation complexe).

FIGURE 17

En résumé nous avons démontré :

THEOREME 7.1.  Pour les courbes planes réelles lisses de degré pair, la
restriction de Rohlin est la seule sur les invariants (d,r,a).

7.2 LES COURBES DE DEGRE IMPAIR

Il nous reste a traiter le cas des courbes de degré impair; les valeurs
admissibles des invariants (d,r,a) sont alors résumées par la Figure 18.

A nouveau on utilise la méthode de Hilbert, qui pour les degrés impairs
démarre avec C); une droite réelle et E, une conique réelle rencontrant C;
en deux points réels. La déformation de Cy-Ey =0 de la Figure 19 fournit
une M-courbe C; de degré 3.

Ensuite on construit une M-courbe Cs de degré 5 en faisant vibrer une
des composantes de Cs, ce qui fournit une nouvelle cubique C; oscillant
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FIGURE 18

relativement a la conique génératrice E, (cf. Figure 19). La simplification
dessinée des points doubles de Csz-E, = 0 fournit la M -courbe Cs cherchée.

Ensuite la méme technique de grignotage des ovales nouveau-nés dans une
M -courbe de Hilbert, fournit des courbes non-séparantes avec un invariant r
décroissant successivement d’une unité jusqu’a atteindre la borne de Harnack
relative au degré impair précédent, i.e. M(d — 2). Les invariants (d,r,a)
ainsi réalisés sont schématisés par des fleches sur la Figure 18. Ensuite en
complétant la famille des courbes ainsi obtenues avec les courbes de Fermat
de degré impair Fy : x?+y? = 1 qui ont r = 1 et qui sont non-séparantes pour
d > 3 (d’apres I'inégalité de Rohlin par exemple), on met a nouveau la main
sur un systeme de courbes permettant d’engendrer toutes les non-séparantes
via I’opération de collage d’une petite conique. Ainsi la restriction de Galois
est la seule pour les courbes non-séparantes de degré impair.

DD

FIGURE 19

G

Pour les séparantes, la méme méthode qu’avant fournit les invariants
délimités par la ligne en tirets sur le diagramme des involutions (cf. Figure 18).
On observe cette fois que I’on manque deux invariants Rohlin-admissibles,
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a savoir (d,r,a) = (5,5,0) et (d,r,a) = (7, 10,0) : le premier s’obtient
en rajoutant une droite & une courbe d’invariants (d,r,a) = (4,4,0), puis en
simplifiant de fagon compatible avec les orientations complexes (cf. Figure 20).

FIGURE 20

Le second s’obtient de la méme maniére a partir de la courbe de la
Figure 15 d’invariants (d,r,a) = (6,9,0) (cf. Figure 21).
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FIGURE 21

En résumé nous avons démontré :

THEOREME 7.2. Pour les courbes planes réelles lisses de degré impair, les
restrictions de Galois et de Rohlin sont les seules sur les invariants (d,r,a).

Cela résout donc completement le probleme de Klein de la caractérisation
des surfaces symétriques réalisables comme courbes réelles lisses dans le plan.
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