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132 N. BERGERON

hyperboliques arithmétiques non standard. Concluons en montrant que le
théorème 4 s'applique à ces variétés. Soit W un sous-espace vectoriel de

V de dimension m — 1 et /i0 la restriction de la forme h a W. Choisissons
W de manière à ce que si H — SU(ho), alors

H(K (g)Q R) ^ SO(n - 2,1 )xC,
où C est un groupe compact. La projection A de H(ö) sur SO(n — 2,1) est

un réseau. Soit F\ un sous-groupe de F d'indice fini agissant librement sur
Hn. Notons Ai Ti DA ; Ai agit librement sur H"-2 et on a une immersion

canonique de Hn_2/Ai dans W/T\. Donc le théorème 4 s'applique et, pour
n > 6, W/Ti a virtuellement des petites valeurs propres. Compte tenu de

notre inventaire (cf. section 3) des variétés hyperboliques connues, on en
déduit :

FAIT. Toutes les variétés hyperboliques de dimension n > 6, n ^ 1 de

la liste du §3 ont virtuellement des petites valeurs propres.

Enfin, remarquons que d'après un théorème de R. Brooks [Br2], toute
variété riemannienne dont le groupe fondamental se surjecte sur un groupe
libre de rang deux admet une tour infinie de revêtements finis dont la première
valeur propre est uniformément minorée. En particulier, le théorème 2 assure

que toute variété hyperbolique compacte qui contient un cycle géodésique de

codimension 1 admet une tour de revêtements finis dont la première valeur

propre est uniformément minorée.

Appendice : Spectre des variétés tubes

Soient n, k deux entiers positifs, n> k. On rappelle qu'une variété tube

de type (n,k) est le quotient W/A de l'espace hyperbolique de dimension n

par un réseau A de Stab (H*) agissant librement sur tf CH". Dans la suite

on se fixe un tel groupe A, on note F Hk/A que l'on suppose compacte
et on note (ds)2 sa métrique. Dans cet appendice, on étudie le spectre du

laplacien de la variété tube T IF/A. La métrique sur T est donnée par
(cf. [Ch])

(dxf (cosh r)2(ds)2 -f (drf + (sinh rf(dof
où x — (s, r, &) avec s G F, r £]0, +oo[, a C Sn~~(*+1). On écrit
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k

{dx)2 (cosh r)2 ^ gij{s\,..., sj^dsfisj + (dr)2

ij=1
n—(k+1)

+ (sinh r)2 hj(ß\ > • • • > 0n-(k+i))d0id6j

ij= 1

On note (resp. (hij)) l'inverse de la matrice (gy) (resp. (hy)) et \g\

(resp. \h\) le module de son déterminant. Alors le laplacien de T s'écrit

V i=l 1

7=1 J

n-{k+1) o n-(fc+l) ^
+ E WS ^ (sinhr)-^VD^-)

i= 1
1

7=1
J

oùD (coshr)2/c|p|(sinhr)2("~^+1))|/z|. Donc, si (p est une fonction de classe

C2 sur 7, le laplacien de est donné par:

A
1

AAï, ^ih7pÂ^-â?
/ \ dp 1

- (k tanh r + (n — (k+ 1)) coth r) — -h ASn-vc+iy(p
v ' or (smhr)z

Il existe un opérateur auto-adjoint canonique (que l'on note aussi À) sur L2(T)

qui étend le laplacien sur les fonctions C°° à support compact. Puisque T
est complet, toutes les extensions auto-adjointes coïncident et À est unique
[Ga]. On appelle fonction de type fini (À,/i) une fonction p sur T définie par
p(x) f{r)g{s)h{a) avec x — (r,s, o), f fonction C°° sur ]0, +oo[ à support
compact, g fonction C°° À-propre sur F et h fonction C°° p -propre sur
S"-$+i). La restriction de À aux fonctions de type fini (X, p) s'exprime à

l'aide d'un opérateur différentiel du second ordre sur ]0,+oo[. On suit [DS]
pour obtenir explicitement le spectre de cet opérateur. On en déduira le spectre
cr(À) de À en utilisant la densité des fonctions de type fini et le théorème
spectral. Soit A(r) (coshr)^(sinhr)"~(/c+1).

1. Etude des fonctions de type fini. Soient À et p deux valeurs propres
des opérateurs À/? et Àgn-^+o. On note E\ et Fß leurs espaces propres
associés. Soient / une fonction de classe C2 sur ]0,+oo[, g e E\, h £ F^
et cp la fonction sur T définie par p{x) f(r)g(s)h(cr), avec x (r, j,cr).
On a

A<p(x) (Dx,fxf) (r)g(s)h{cr),
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OU

Dx'ßf
A(r)

d df
3r [A{r +

A LL

+ /•(coshr)2 (sinhr)2

De même que pour le laplacien, il existe un unique opérateur auto-adjoint
(que l'on note aussi Ga,m) sur L2(0, oo;A(r)dr) qui étend l'opérateur Ga,m

sur les fonctions C°° à support compact. Il est connu (cf. [DS]) que le spectre
ct(Oa,m) de Da,^ est réunion disjointe du spectre discret

crd(DajM) — {v | Da,^ — vl n'est pas injective}

et du spectre continu

(jc(Da)M) {v | (Ga— vl)~l existe mais n'est pas continue}

Soit ae(n\)fJ) le spectre essentiel de Oa,^ i-e- l'ensemble des points non-isolés
de ^(Ga,^)- L'ensemble <t(Ga,m) — ^(Ga,^) est un ensemble fini d'éléments
de Ga,^)- Pour r proche de l'infini, l'équation

(1) Da,- p2-s2)/ 0 (avec et j C)

devient
d2 .d

W+(n-l)dr-iP ~S))f °-

Les solutions de cette équation sont asymptotes à const• e^p±^r. Donc, d'après
[DS; XIII.7.40], ae(Ga)M) [p2, +oo). Étudions maintenant le bas du spectre.
On cherche une solution explicite à l'équation (1). L'opérateur étant elliptique,
on cherche (cf. [Ru]) / dans L2(0, oo\A{r)dr) D C°°. On sait (cf. [Ch]) que
l'on peut écrire p l(n — (k -j- 2) 4- T) avec l G N et A t(k — 1 — t) avec

te[o,*-i]u(*=± + i R+). On cherche alors une solution à l'équation (1)

sous la forme
(sinhr)'

/(r) (côshrj7

avec p C°°. On a

- t^[|"(A(r)/'(r»]
A(r) or

- (sinhr)'
W'{r)+ (p'(r)((n ~(k1) + 21)coth -fc) tanhr)

(coshr)rL v 7

/Z(n-(fc + 2)-|-/) m(m — (k — 1)) „ 1 7 ^+ p(r)( ~2 ~2 h (l ~ t)(n — 1 + l — f)JJ
sinh r cosh r

L'équation (1) s'écrit donc (après simplification par i—GL):
(cosh r)'
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(2) f"(r) + ip'(r)[(n— (fc + 1) + 2Z)coth r

+ (k-tanh + <p(r)((p')2 — 0

où p' p + l-1.Or l'équation (2) possède une solution régulière en 0 qui

s'exprime à l'aide de la fonction hypergéométrique (cf. [Er]) :

<ps(r) (coshr)r-p'2Fx(\(p+1-t-s),\{p--k +1 +1+1 -5); 2=4 + /; tanh2 r)

Donc une solution régulière en 0 de l'équation (1) est donnée par

fs(r) (tanhr)'(cosh r)s~p2F\ (^{p+l—t—s),+^+Z;tanh2r).

Et ([Er, p. 104]), pour Re(i) > 0,

/s(r) £(5)^-^(1+0(1))

quand r —> +00, avec

cto 2T* nhin-k) + ms)
n\(s +p+i- t))T( i(s + p-k+i + t+1))

Les valeurs propres de l'opérateur D\(dans L2(0,oo;A(r)dr)) inférieures
à p2 sont donc les nombres p2 — s2 où s est un zéro positif de c(s). On

obtient donc a(n\tfJL) {p2 — s2 | 5 > 0 et c(j) 0} U [p2, +00).

2. Conclusion. L'espace L2(0, 00; A{r)dr) <g> 0 (0^-F^) est dense

dans L2(T) et l'opérateur À sur L2(T) induit sur chaque sous-espace
L2(0, oo\A(r)dr) <g> E\ 0 l'opérateur 0^0 Id. Donc, d'après le
théorème spectral, on obtient:

THÉORÈME 5. Soit A un réseau cocompact de Stab(H^) agissant librement

sur C Hn. Soit F Hk/A et T Hn/A. Le spectre L2 de la
variété tube T est la réunion du spectre essentiel <7e(À) [p2,-hoo) et des

petites valeurs propres p2 — s2 où p et s t — l — p — 2p G]0, p] avec

p,/GN et t(k — 1 — t) dans le spectre de F.

En particulier, si k — 1 > p (i.e. 2k > n + 1), en prenant t k — 1,

p l 0 on obtient que p2 - (k- 1 - p)2(k -1) (n - k) est dans le spectre
L2 de T.
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