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132 N. BERGERON

hyperboliques arithmétiques non standard. Concluons en montrant que le
théoréme 4 s’applique a ces variétés. Soit W un sous-espace vectoriel de
V de dimension m — 1 et hy la restriction de la forme 2 a W. Choisissons
W de maniere a ce que si H = SU(hy), alors

H(K @ R)=SO(n—-2,1) x C,

ou C est un groupe compact. La projection A de H(O) sur SO(n—2,1) est
un réseau. Soit I'; un sous-groupe de I" d’indice fini agissant librement sur
H”. Notons A; =I'1NA; A; agit librement sur H*? et on a une immersion
canonique de H""?/A; dans H"/T’;. Donc le théoréme 4 s’applique et, pour
n > 6, H'/I'; a virtuellement des petites valeurs propres. Compte tenu de
notre inventaire (cf. section 3) des variétés hyperboliques connues, on en
déduit :

FAIT. Toutes les variétés hyperboliques de dimension n > 6, n # 7 de
la liste du §3 ont virtuellement des petites valeurs propres.

Enfin, remarquons que d’aprés un théoreme de R. Brooks [Br2], toute
variété riemannienne dont le groupe fondamental se surjecte sur un groupe
libre de rang deux admet une tour infinie de revétements finis dont la premiere
valeur propre est uniformément minorée. En particulier, le théoréme 2 assure
que toute variété hyperbolique compacte qui contient un cycle géodésique de
codimension 1 admet une tour de revétements finis dont la premiere valeur
propre est uniformément minorée.

APPENDICE: SPECTRE DES VARIETES TUBES

Soient n, k deux entiers positifs, n > k. On rappelle qu'une variété tube
de type (n,k) est le quotient H"/A de I’espace hyperbolique de dimension n
par un réseau A de Stab (HF) agissant librement sur H* C H". Dans la suite
on se fixe un tel groupe A, on note F = H*/A que ’on suppose compacte
et on note (ds)®> sa métrique. Dans cet appendice, on étudie le spectre du
laplacien de la variété tube T = H"/A. La métrique sur T est donnée par
(ct. [Ch])

(dx)? = (cosh r)(ds)? + (dr)* + (sinh r)*(do)?,

ol x=(s,r,0) avec s € F, r €]0,+oo[, o € 8"~ %D On écrit
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k
(dx)? = (coshr)? Y _ gij(s1, - ., se)dsids; + (dr)”
ij=1
n—G+1)
+ (sinh r)2 Z hij(é’l, R 9n_(k+1))d9,-d9j .
ij=1
On note (g¥) (resp. (h¥)) I'inverse de la matrice (gy) (resp. (hy)) et |g|
(resp. |h|) le module de son déterminant. Alors le laplacien de T s’€crit
.

A. = ! [Z ai (Z(coshr) Zg”\/— ) gr(\/ﬁg—r)

n—k+1) 5 n—(k+1)
+ 3 Z (sinh 7)™ Zhlf\/_ )],

i=1

oit D = (cosh r)*|g|(sinh r)?*~® +D)|h| Donc, si ¢ est une fonction de classe
C? sur T, le laplacien de ¢ est donné par:

1 0%
Ap = ———App — —=
1 (cosh r)? F Or?

5@ 1
or (smh r)?

— (ktanhr + (n — (k + 1)) cothr) Agr—t+1p .
Il existe un opérateur auto-adjoint canonique (que 1’on note aussi A) sur L*(T)
qui étend le laplacien sur les fonctions C*° a support compact. Puisque T
est complet, toutes les extensions auto-adjointes coincident et A est unique
[Ga]. On appelle fonction de type fini (A, 1) une fonction ¢ sur T définie par
p(x) = f(r)g(s)h(o) avec x = (r,s,0), f fonction C*° sur ]0,+oo[ a support
compact, g fonction C*° A-propre sur F et h fonction C*° p-propre sur
S*—*+D Ta restriction de A aux fonctions de type fini (A, u) s’exprime 2
I’aide d’un opérateur différentiel du second ordre sur ]O, +oo[. On suit [DS]
pour obtenir explicitement le spectre de cet opérateur. On en déduira-le spectre
o(A) de A en utilisant la densité des fonctions de type fini et le théoréme
spectral. Soit A(r) = (cosh r)*(sinh r)*~&+1D

1. Etude des fonctions de type fini. Soient \ et 1 deux valeurs propres
des opérateurs Ar et Ag—w+n. On note Ey et F, leurs espaces propres
associés. Soient f une fonction de classe C* sur ]0,+oo[, g €Ex, h€ F "
et ¢ la fonction sur T définie par ¢(x) = f(rg(s)h(o), avec x = (r,s,0).
On a

Ap(x) = (L, f) (Ng(Hh(o),
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1 of A 7
Dt = A { ( "o )} [(coshr)2 + (sinh r)? f-

De méme que pour le laplacien, il existe un unique opérateur auto-adjoint
(que I’on note aussi Oy ,) sur L*(0,00;A(r)dr) qui étend I'opérateur Oy ,
sur les fonctions C*° a support compact. Il est connu (cf. [DS]) que le spectre
o(Ux,u) de Uy, est réunion disjointe du spectre discret

04(0x,,) = {v | Ox — vI n’est pas injective}
et du spectre continu
o@x ) ={v| @O, — vI)™! existe mais n’est pas continue} .

Soit o,.(0y ) le spectre essentiel de U , i.e. I’ensemble des points non-isolés
de o(0y,,). L'ensemble o(0) ,) — o.(0y ,) est un ensemble fini d’éléments
de o4(U),,). Pour r proche de infini, I’équation

(1) Onuf — (2 —sHf =0 (avec p="

et s€C)

devient
d> 2
(d2+<n—1>——<p —s)>f 0.

Les solutions de cette équation sont asymptotes a const-e*" . Donc, d’apres
[DS; XII1.7.40], o.(0y ,) = [p?, +00). Etudions maintenant le bas du spectre.
On cherche une solution explicite 4 1’équation (1). I’ opérateur étant elliptique,
on cherche (cf. [Ru]) f dans L%(0, 00;A(r)dr) N C*°. On sait (cf. [Ch]) que
I’on peut écrire p=1In—(k+2)+10) avec I N et A =#tk—1—1) avec
te[0,k—1]U ("—”2‘—1 4+ iR4). On cherche alors une solution a 1’équation (1)
sous la forme

(sinh r)!
(coshr)!

) = () T

avec ¢ C°°. On a

- ———[—(A(r)f (M)] =

A(r) 0
(sinhr)! . , ,
— [cp (r)+ ¢'(r) ((n —(k+1)+2)cothr — (2t — k) tanh r)
(coshr)!
In—k+2)+1) mm—(k-—1))
— +(U-tn—-14+1-10))].
+ go(r)( sinh® r cosh® r ( ) ))} :
. l 1
L’équation (1) s’écrit donc (apres simplification par (stmh7) . |
(coshr)! y
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2 "+ O ((n—(k+1)+2)cothr
+ (k20 tanh ) + o(N((p)* —s%) =0

ol p/ = p+1—t. Or I'équation (2) posséde une solution réguliere en 0 qui
s’exprime 2 ’aide de la fonction hypergéométrique (cf. [Er]):

0s(r) = (cosh )~ Fy(A(p+1—1—5), L(p—k+I+1+1—5); 55 + [ taoh® r) .
Donc une solution réguliere en 0 de 1’équation (1) est donnée par
(1) = (tanh »)!(cosh )P o Fy (L (p41—t—5), L (p—k+l+1+1—5); 255 +1; tanh® r) .
Et ([Er, p. 104]), pour Re(s) > 0,

fi(r) = e(9)e" =P (1 4 o(1))
quand r — 400, avec

F((n— k) + D)
Th+p+l—AE+p—k+l+t+1)

c(s) =2°7°

Les valeurs propres de ’opérateur [l , (dans L*(0, 00; A(r)dr)) inférieures
a p? sont donc les nombres p? —s* ol s est un zéro positif de c(s). On
obtient donc o(dx ) = {p* —s* | s > 0 et c(s) = 0} U [p?, +00).

2. Conclusion. Lespace L*(0,00;A(r)dr) ® (BAE)) ® (@, F,) est dense
dans L*(T) et l'opérateur A sur L?*(T) induit sur chaque sous-espace
L*(0,00;A(r)dr) ® Ex ® F,, Uopérateur O, , ® Id ® Id. Donc, d’apres le
théoreme spectral, on obtient:

THEOREME 5. Soit A un réseau cocompact de Stab (H¥) agissant libre-
ment sur H* C H". Soit F = H*/A et T = H'/A. Le spectre L? de la
variété tube T est la réunion du spectre essentiel o,(A) = [p?,+00) et des
petites valeurs propres p* —s* on p = % et s=t—1—p—2p €]0, p] avec
p,lL €N et t(k—1—1) dans le spectre de F.

En particulier, si k—1 > p (i.e. 2k > n+ 1), en prenant ¢t = k — 1,

p =1=0 on obtient que p* —(k—1—p)* = (k—1)(n—k) est dans le spectre
L?> de T.
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