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4. Variétés hyperboliques de dimension 3. En dimension trois, les
variétés qui vérifient les hypotheses du théoreme d’hyperbolisation de Thurston
ou qui sont obtenues par le théoréme de chirurgie de Dehn hyperbolique [Th]
fournissent une myriade d’exemples de variétés hyperboliques pour lesquelles
la conjecture de Thurston demeure ouverte. Dans [Lul], Lubotzky pose la
question de savoir si les 3-variétés hyperboliques non compactes de volume fini
(dont on sait qu’elles vérifient la conjecture de Thurston, cf. [He]) admettent
un revétement fini dont le groupe fondamental se surjecte sur un groupe libre
de rang deux. Signalons.que, dans [CLR], Cooper, Long et Reid répondent
par I’affirmative a ce probleme.

5. Variétés arithmétiques « non standard ». En dimension impaire il existe
des variétés arithmétiques non standard (toutes compactes). On en esquisse la
construction a la section 5. Les théorémes précédents ne s’appliquent pas a
celles-ci en raison de I’absence de cycles géodésiques de codimension 1. La

conjecture de Thurston est néanmoins vérifiée pour la plupart de ces variétés
(cf. [Li], [RV], [LM] et [Lu2]).

4. VARIETES HYPERBOLIQUES ISOSPECTRALES

Soit My une variété hyperbolique compacte de dimension n. On suppose
que M, contient un cycle géodésique de dimension n — 1. Le lemme suivant
découle du théoreme 2.

LEMME 4. Il existe un revétement fini M de My tel que

1) M contient deux sous-variétés plongées totalement géodésiques disjointes
F{ et Fp;

2) M contient deux lacets fermés disjoints vy, et 7, ;
3) pour i=1,2, vy; rencontre F; en un et un seul point;
4) les ensembles vy N F, et v, N F; sont vides;

5) il existe une isométrie @ de M qui permute F, et F,.

Démonstration. D’apres le théoréme 2, quitte a remplacer M, par un
revétement fini que nous noterons toujours My, on peut supposer qu’il existe
deux sous-variétés totalement géodésiques orientées F et V dans M, dont
Punion est non séparante. Le nombre d’intersection homologique entre un
lacet fermé de M, et la sous-variété V induit un morphisme surjectif p;
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du groupe fondamental m,(My) de My dans Z. Soit n; un entier non nul.
Soit M le revétement fini (cyclique) galoisien de M, associé au sous-groupe
pl_l(an) de m(Myp) : le groupe de Galois de ce revétement est isomorphe
a Z/mZ. Soit v un lacet fermé dans M, intersectant I’ensemble F UV en
un unique point qui appartient a F. Le lacet y et la variét€é F se relevent
au revétement M. Soit F; un relevé arbitraire de F. On suppose n; pair.
Soit ¢ I'isométrie de M induite par la transformation de revétement associée
a I’élément % du groupe Z/nZ. Soit F, = @(F;). La sous-variété F, est
un relevé de F et I'isométrie ¢ permute F; et F,. De plus il existe une
constante co indépendante de n; telle que d(Fi,F>) > con;. Donc, pour m
suffisamment grand, il existe deux relevés v;, v, de v dans M tels que les
ensembles v, N F, et v, N F; soient vides. Ce qui acheve la démonstration
du lemme 4. [

DEFINITION. Soit v une géodésique fermée dans une variété hyperbolique.
On dira que v est d-réductible si y est librement homotope a un produit de
Jacets pointés tous librement homotopes a des géodésiques de longueur plus
petite que d.

Remarquons des maintenant que cette propriété est invariante par isomeétries.

Soit M la variété obtenue dans le lemme 4. Soit W la variété compacte
a bord obtenue en découpant M le long de F; et de F,. Soit d un réel
supérieur ou égal a la longueur de ~y; et de vy, tel que toutes les gé€odésiques
de W soient d-réductibles (un tel d existe car la variét€ W est compacte).
Soit 6 le diamétre de la variéte W.

LEMME 5. Il existe L > 0 (que l’on peut choisir arbitrairement grand)
et un revétement fini M de M tels que

1) M contient deux sous-variétés disjointes totalement géodésiques F, et F,
dont ['union est non séparante;

2) les géodésiques de l’ensemble C; = {géodésiques fermées rencontrant
F; avec un nombre d’intersection homologique non nul et de longueur
minimale} (i = 1,2) rencontrent I’ensemble F 1 U Fy en un et un seul
point qui, de plus, appartient a F;;

3) ['ensemble C des géodésiques fermées de longueur L qui ne sont pas
d-réductibles est égal a la réunion disjointe de C; et de C;;

4) deux géodésiques quelconques dans C sont a distance plus petite que 0.
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Démonstration. Le corollaire qui suit le théoréme 2 montre que les sous-
variétés F, et F, de M permettent de construire une application continue f
de M sur un bouquet de deux cercles. Soit xy € M un point n’appartenant
pas a Fy UF,. Lapplication f induit un morphisme surjectif p, du groupe
fondamental (M, xp) sur le groupe libre de rang deux (a,b), ou chaque
générateur correspond a une boucle du bouquet de cercles. Soit n, un entier
positif non nul. Soit G le sous-groupe

— — - = -1 12 12 n—1_3—ny+1
<a”2,aba La*ba™?, ... a™ a1 b bab~! bPabT?,. .. b lab )

du groupe (a,b). Soit M le revétement fini de M associé au sous-groupe
123 1(G) de m(M,xp); c’est un revétement de degré 2n, — 1 qui n’est pas
galoisien. Le revétement du bouquet de cercles associé au sous-groupe G est
un graphe G décrit dans la figure 2 (lorsque n; = 5).

FIGURE 2

Le graphe G

On peut construire le revétement M de la maniére suivante. On découpe
M le long des sous-variétés F; et F,. On obtient ainsi la variété a bord w
avec

OW =F UF] UFf UF; .

On construit M en remplagant chaque sommet s du graphe G ci-dessus avec
pour arétes sortantes ej, e] , e, e, par une copie de W et en recollant
les Fi* avec les F; se trouvant sur une méme aréte. Soit xo le point de
M au-dessus de Xo qui appartient a la copie de W identifiée au sommet
So du graphe G. L’application f se reléve en une application f continue de

M dans le graphe G qui induit un morphisme surjectif ps: m(M,%) — G.
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L’isométrie ¢ (donnée par le point 5) du lemme 4) envoie le point xo de
M sur un point n’appartenant pas a la réunion de F; et de F, et permute
F1 et F,; elle induit donc un isomorphisme de 7;(M,xp) qui laisse stable le
sous-groupe p, Y(G). L’isométrie ¢ se reléve donc en une isométrie & de M.

La préimage de F; (resp. F,) est la réunion disjointe de 2n, — 1 copies
isométriques de F; (resp. F,). La préimage de ~; (resp. ;) a n, composantes
connexes: ny — 1 d’entre elles sont isométriques & v; (resp. 7.) et l'autre
est un revétement de degré n, de ; (resp. 72) que I’on note 7; (resp. ¥2).
Le lacet +; (resp. 7,) rencontre n, relevés de F; (resp Fz) Fl 1s-- F"’
(resp. F},.. F”’) on en choisit un que 1’on note F 1 (resp F2) de maniere
a ce que fl et F2 soient permutées par @ et d(Fl,Fz) > c1hy ou ¢y est
une constante indépendante de n;,.

Pour i = 1,2 soit C; I’ensemble des géodésiques fermées de M rencontrant
F; avec un nombre d’intersection homologique non nul et de longueur minimale
que I’on note [;. Puisque ¢ est une isométrie de M qui permute les F;, on
a [; = [, ; on note cette valeur commune L.

FArT 1. Tout élément de C; est une réunion de segments géodésiques
joignant les F! pour j=1,... ny. En particulier, L > cyn, oi c, est une
constante indépendante de n;.

En effet, soit v € C;. Soit g € (M, xy) un représentant de . Puisque -y
rencontre F. ; avec un nombre d’intersection homologique non nul, la somme
des puissances de a™ (resp. b™) si i = 1 (resp. si i = 2) dans ’écriture
réduite de p3(g) € G (sur les générateurs donnés dans la définition de G) est
non nulle. Alors, 7y rencontre tous les Fl pour j = 1,...,n, avec un degré
d’intersection homologique non nul, et le fait 1 en découle.

FAIT 2. Pour ny suffisamment grand, tout élément de Cy (resp. C,) est
disjoint de F, (resp. F1).

En effet, soit v un élément de C; (resp. C;) qui rencontre F2 (resp. F 1)
Le lacet « contient un sous chemin géodésique disjoint de F; (resp. F»)

partant d’un point de f (so) et y revenant apreés avoir rencontré F » (resp.

s ) R ~1
Fy1). Un tel chemin est de longueur > Sny. Or le diametre de f  (so) est
égal a 6. Donc, si ny > 22 on peut tronquer -y et obtenir un lacet de longueur

plus petit que L et rencontrant F (resp. F,) avec un nombre d’intersection
homologique non nul; ce qui est absurde par définition de L.
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FAIT 3. Pour ny suffisamment grand, tout élément de C; pour i = 1,2,

~

rencontre F; en un unique point.

En effet, soit v un élément de C; qui rencontre deux fois F;. Soit §;
le diametre de F;. St ny > 5—7 on peut tronquer -~y et obtenir un lacet de

longueur plus petite que L et rencontrant F; avec un nombre d’intersection
homologique non nul; ce qui est absurde par définition de L.

Dans la suite on suppose que 7 est choisi suffisamment grand de maniere
a ce que les conclusions des faits 2 et 3 soient vérifiées et L > 2d. Les deux
premiers points du lemme 5 sont donc démontrés.

FAIT 4. Tout lacet ~y représenté dans 7r1(1\~4 ,Xo) par un élément du noyau
de p3 est d-réductible.

En effet un tel lacet v est homotope a un lacet de W ; le fait 4 résulte
donc de la définition de d.

Montrons le point 3). Montrons d’abord que C C C; UCy. Les np — 1
préimages isométriques (de longueur < d) de ; (resp. 7y2) sont représentées
par des éléments de m;(M,X;) dont les images par ps; sont les b/ab™/ (resp.
a/ba) pour j = 1,...,ny — 1. Donc d’apres le fait 4, I’ensemble des
géodésiques d-réductibles est représenté dans (M, %) par le sous-groupe
p3; '(H) ob H est un sous-groupe normal de G contenant les b/ab™ et les
a’ba™ pour j=1,...n,—1. Soit v un élément de C. Soit g € G I'image par
p3 d’un représentant de y dans (M, %0). Alors, g ¢ H et, dans I’écriture
réduite de g sur les générateurs de G, la somme des puissances des a™ ou des

"2 est non nulle. Donc -y intersecte F 1 ou F » avec un nombre d’intersection
homologique non nul. Comme v est de longueur L, elle appartient a C; UC,.

Montrons maintenant que C; UC, C C i.e. que les éléments de C; UC,
ne sont pas d-réductibles. Soit v € C; U C,. Supposons que <y soit une
géodésique d-réductible. Alors « s’écrit comme un produit libre de lacets
librement homotopes a des gé€odésiques de longueur plus petite que d. Mais
~ intersecte F; ou F, en un unique point, donc une des géodésiques de
longueur d intersecte Fy ou F, avec un degré d’intersection homologique
non nul, ce qui est impossible par minimalité de L. Le point 3) du lemme 5
est donc démontré.

Enfin le point 4) se déduit simplement du fait que tout élément de C passe

~—1
par un point de I’ensemble f (so) qui est de diametre §. [




126 N BERGERON

THEOREME 3. Soit My une variété hyperbolique compacte. On suppose
que My contient un cycle géodésique de codimension un. Alors My admet
deux revétements finis isospectraux mais non isométriques.

Démonstration. Pour construire ces deux revétements isospectraux on va
utiliser la méthode de Sunada (pour un survol introductif de 1’isospectralité
et en particulier de la méthode de Sunada cf. [Brl]). D’apres les lemmes 4
et 5, il existe un revétement fini M de M, comme dans le lemme 5 (dans la
suite on adopte les notations du lemme 5 et on suppose choisi L > 26).

On considere les graphes

g1=X/H1 et gZI/Y/Hg
ou & est le graphe de Cayley de SL(3,2) pour les générateurs
0 1 1 1 00
A=10 1 0 et B={(10 0 1],
1 00 0O 1 1
1 x =
H,; est le sous-groupe de SL.(3,2) constitué des matrices (O * *) , et Hy
0 x =«

1 00
le sous-groupe de SL(3,2) constitué des matrices <* * *) .

* kX%

— -

s - - - ——

FIGURE 3
Le graphe G,

On commence par construire un revétement régulier de M: M de groupe de
Galois isomorphe a SL(3,2). La variété M contient deux sous-variétés F ; et
F, auxquelles on sait associer un morphisme surjectif du groupe fondamental
de M sur le groupe libre de rang deux qui se surjecte sur SL(3,2). Soit
donc > P4 la surjection de 7r1(M) sur SL(3,2). On note M le revétement fini
de M associé au sous- groupe p, 1({6}) de 7r1(M) Le revétement M peut
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FIGURE 4

Le graphe G

aussi s’obtenir de la méme maniére que dans la démonstration du lemme 5 en

recollant la variété M — (Fy UF,) suivant le graphe X. La variété M ainsi
obtenue admet une action de SL(3,2) par lsometnes de la méme maniere
que SL(3,2) agit sur X. Maintenant, soient M, =M /Hy et M, =M /H;.
Puisque l'action de SL(3,2) sur M est compatible avec son action sur X,
les variétés M, et M, peuvent aussi étre obtenues en recollant des copies de

— (F ; U F2) suivant les graphes G; et G,. On applique alors le théoreme
suivant.

THEOREME (Sunada [Sun]). Soit G un groupe fini qui agit librement sur
une variété riemannienne compacte M par isométries. Soient Hy, Hy < G
deux sous-groupes Vérifiant

[} N Hy| = |[g] N Hz|

pour tout g € G (on [g] désigne la classe de conjugaison de g dans G).
Alors les deux quotients My = M/Hy et M, = M /H, sont isospectraux.

Il est classique (cf. [Brl]) que les groupes H;, H, < G = SL(3,2)
vérifient la condition du théoreme de Sunada. On en déduit que les variétés
hyperboliques M, et M, construites ci-dessus sont isospectrales.

Pour conclure il nous reste a2 montrer que les variétés ]\711 et Mz ne
sont pas isométriques. Pour ce faire on compte le nombre maximal d; de
géodésiques simples de longueurs L qui ne sont pas d-réductibles et qui sont
deux a deux a distance < 2L+ 26 dans M;.

Chaque élément v de C admet 3 relevés dans chaque M; pour [ = 1,2
dont un seul lui est isométrique; on le note ;. De plus dans M; il existe Y1
et 7] des relevés de «,v' € C & distance > 3L > 2L + 26 et dans M, pour

/

tous v,y € C, 7, et v, sont a distance < 2L + 25. Nous allons montrer
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que les géodésiques ; pour v € C sont les seules géodésiques fermées de
longueur L qui ne sont pas d-réductibles dans M; (i = 1,2). En particulier
on aura montré que d; # d, et donc que M; et M, ne sont pas isométriques.

Soit A une géodésique simple fermée de longueur L dans M;. Si la
projection de A dans M rencontre un F i avec un nombre d’intersection
homologique non nul alors elle appartient a C et la projection de revétement
restreinte 2 A est une isométrie. En particulier A = ~; pour un certain
v € C. Si la projection de A dans M rencontre chaque F; avec un nombre
d’intersection homologique nul, alors d’apres le lemme 5 elle est d-réductible
et il en est de méme pour A. [

De la section précédente on tire immédiatement le corollaire suivant.

COROLLAIRE 3. Pour tout n, il existe des variétés hyperboliques isospec-
trales non isométriques de dimension n (non nécessairement arithmétiques).

La littérature sur I'isospectralité est vaste (cf. [Brl]), signalons que les
premiers exemples de variétés hyperboliques isospectrales ont été obtenus
par M.-F. Vignéras [Vig] en dimension deux et trois a 1’aide de variétés
arithmétiques. Depuis, la méthode de Sunada a permis de construire de
nombreux exemples en dimension deux. En grande dimension (n > 26),
R. Spatzier a montré [Sp], toujours a l’aide de la méthode de Sunada et
a l’aide du théoréme de rigidité de Mostow, que toute variété hyperbolique
compacte est finiment revétue par deux variétés hyperboliques isospectrales non
isométriques. Enfin en dimension trois, A. Reid [Re] a construit des exemples
non arithmétiques de variétés hyperboliques isospectrales non isométriques.

5. PETITES VALEURS PROPRES DE CERTAINES VARIETES HYPERBOLIQUES

Dans cette section, on s’intéresse au probléme de I’existence de petites
valeurs propres. '

On dira qu’une suite {M,} de variétés hyperboliques converge uni-
formément sur tout compact vers une variété hyperbolique M si pour tout
compact K de M, pour m grand, il existe un compact K,, C M,, isométrique
a K. Signalons que cette définition est plus forte que la notion habituelle de
convergence géométrique (cf. [CEG]). On appelle enfin variété tube de type
(n,k) le quotient H"/A de I’espace hyperbolique H" par un réseau A de
Stab (H*) agissant librement sur H¥.
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