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4. Variétés hyperboliques de dimension 3. En dimension trois, les

variétés qui vérifient les hypothèses du théorème d'hyperbolisation de Thurston

ou qui sont obtenues par le théorème de chirurgie de Dehn hyperbolique [Th]

fournissent une myriade d'exemples de variétés hyperboliques pour lesquelles

la conjecture de Thurston demeure ouverte. Dans [Lui], Lubotzky pose la

question de savoir si les 3-variétés hyperboliques non compactes de volume fini

(dont on sait qu'elles vérifient la conjecture de Thurston, cf. [He]) admettent

un revêtement fini dont le groupe fondamental se surjecte sur un groupe libre
de rang deux. Signalons que, dans [CLR], Cooper, Long et Reid répondent

par l'affirmative à ce problème.

5. Variétés arithmétiques « non standard ». En dimension impaire il existe

des variétés arithmétiques non standard (toutes compactes). On en esquisse la

construction à la section 5. Les théorèmes précédents ne s'appliquent pas à

celles-ci en raison de l'absence de cycles géodésiques de codimension 1. La
conjecture de Thurston est néanmoins vérifiée pour la plupart de ces variétés

(cf. [Li], [RV], [LM] et [Lu2]).

4. Variétés hyperboliques isospectrales

Soit Mo une variété hyperbolique compacte de dimension n. On suppose
que Mo contient un cycle géodésique de dimension n — 1. Le lemme suivant
découle du théorème 2.

LEMME 4. Il existe un revêtement fini M de Mo tel que

1) M contient deux sous-variétés plongées totalement géodésiques disjointes
Fi et F2 ;

2) M contient deux lacets fermés disjoints 71 et y2 >'

3) pour i ~ 1,2, 7i rencontre Ft en un et un seul point;
4) les ensembles 71 H F2 et y2 H F\ sont vides;

5) il existe une isométrie ip de M qui permute F\ et F2.

Démonstration. D'après le théorème 2, quitte à remplacer M0 par un
revêtement fini que nous noterons toujours M0, on peut supposer qu'il existe
deux sous-variétés totalement géodésiques orientées F et V dans M0 dont
l'union est non séparante. Le nombre d'intersection homologique entre un
lacet fermé de M0 et la sous-variété V induit un morphisme surjectif px
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du groupe fondamental it\ (M0) de Mo dans Z. Soit n\ un entier non nul.

Soit M le revêtement fini (cyclique) galoisien de Mo associé au sous-groupe
pfl{n{L) de 7ir(Mo) : le groupe de Galois de ce revêtement est isomorphe
à 7j/n{L. Soit 7 un lacet fermé dans Mo intersectant l'ensemble F U V en

un unique point qui appartient à F. Le lacet 7 et la variété F se relèvent

au revêtement M. Soit F\ un relevé arbitraire de F. On suppose n\ pair.
Soit 99 l'isométrie de M induite par la transformation de revêtement associée

à l'élément ^ du groupe Z/niZ. Soit F2 — <p(F\). La sous-variété F2 est

un relevé de F et l'isométrie tp permute F\ et F2. De plus il existe une

constante co indépendante de n\ telle que d{F\, F2) > co^i. Donc, pour n\
suffisamment grand, il existe deux relevés 71, 72 de 7 dans M tels que les

ensembles 71 n F2 et 72 D F\ soient vides. Ce qui achève la démonstration
du lemme 4.

DÉFINITION. Soit 7 une géodésique fermée dans une variété hyperbolique.
On dira que 7 est d-réductible si 7 est librement homotope à un produit de

lacets pointés tous librement homotopes à des géodésiques de longueur plus

petite que d.

Remarquons dès maintenant que cette propriété est invariante par isométries.

Soit M la variété obtenue dans le lemme 4. Soit W la variété compacte
à bord obtenue en découpant M le long de F\ et de F2. Soit d un réel

supérieur ou égal à la longueur de 71 et de 72 tel que toutes les géodésiques

de W soient d-réductibles (un tel d existe car la variété W est compacte).
Soit ô le diamètre de la variété W.

LEMME 5. Il existe L > 0 (que l'on peut choisir arbitrairement grand)
et un revêtement fini M de M tels que

1) M contient deux sous-variétés disjointes totalement géodésiques F\ et F2

dont l'union est non séparante;

2) les géodésiques de l'ensemble Ci {géodésiques fermées rencontrant

Fi avec un nombre d'intersection homologique non nul et de longueur

minimale} (i 1,2) rencontrent l'ensemble F\ U F2 en un et un seul

point qui, de plus, appartient à Fi ;

3) l'ensemble C des géodésiques fermées de longueur L qui ne sont pas
d-réductibles est égal à la réunion disjointe de C\ et de C2 ;

4) deux géodésiques quelconques dans C sont à distance plus petite que 6.
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Démonstration. Le corollaire qui suit le théorème 2 montre que les sous-

variétés F\ et F2 de M permettent de construire une application continue /
de M sur un bouquet de deux cercles. Soit xq G M un point n'appartenant

pas à Fi UF2. L'application / induit un morphisme surjectif p2 du groupe
fondamental it\(M,xq) sur le groupe libre de rang deux (a,b), où chaque

générateur correspond à une boucle du bouquet de cercles. Soit n2 un entier

positif non nul. Soit G le sous-groupe

(ani,aba~l ,a2ba~2,... :an2~lba~ni+1 ,bn2 ,bab~l ,b2ab~2,..., bn2~lab~~122+1

du groupe (a,b). Soit M le revêtement fini de M associé au sous-groupe
P2l(G) de 7Ti(M,x0) ; c'est un revêtement de degré 2n2 — 1 qui n'est pas
galoisien. Le revêtement du bouquet de cercles associé au sous-groupe G est

un graphe Q décrit dans la figure 2 (lorsque n2 5).

Figure 2

Le graphe Q

On peut construire le revêtement M de la manière suivante. On découpe
M le long des sous-variétés F{ et F2 On obtient ainsi la variété à bord
avec

dw F+U Ff UF+UF2-.
On construit M en remplaçant chaque sommet s du graphe G ci-dessus avec
pour arêtes sortantes é\,e~, e+, par une copie de et en recollant
les F+ avec les F~ se trouvant sur une même arête. Soit x0 le point de
M au-dessus de x0 qui appartient à la copie de identifiée au sommet
s2 du graphe Q. L'application / se relève en une application / continue de
M dans le graphe Q qui induit un morphisme surjectif p3 : ni (M, —> G
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L'isométrie p (donnée par le point 5) du lemme 4) envoie le point xq de

M sur un point n'appartenant pas à la réunion de F\ et de F2 et permute
Fi et F2 ; elle induit donc un isomorphisme de 7Ti(M,xo) fi11* laisse stable le

sous-groupe p^iG). L'isométrie p se relève donc en une isométrie ^ de M.
La préimage de F\ (resp. F2) est la réunion disjointe de 2n2 — 1 copies

isométriques de F\ (resp. F2). La préimage de 71 (resp. 72) a n2 composantes
connexes: n2 — 1 d'entre elles sont isométriques à 71 (resp. 72) et l'autre
est un revêtement de degré n2 de 71 (resp. 72) que l'on note 71 (resp. 72).
Le lacet 71 (resp. 72) rencontre n2 relevés de Fi (resp. F2): F*,..., F"2

(resp. F\,... FÎJ2); on en choisit un que l'on note Fi (resp. F2) de manière
à ce que F\ et F2 soient permutées par p et d(Fi,F2) > c\n2 où c\ est

une constante indépendante de n2.

Pour i 1,2 soit Cz l'ensemble des géodésiques fermées de M rencontrant

Fi avec un nombre d'intersection homologique non nul et de longueur minimale

que l'on note lt. Puisque p est une isométrie de M qui permute les F;, on
a li l2 ; on note cette valeur commune L.

FAIT 1. Tout élément de Ci est une réunion de segments géodésiques

joignant les F{ pour j — 1,..., n2. En particulier, L > c2n2 où c2 est une

constante indépendante de n2.

En effet, soit 7 £ Ci. Soit g G 7Ti(M,Îo) un représentant de 7. Puisque 7
rencontre Fz avec un nombre d'intersection homologique non nul, la somme
des puissances de an2 (resp. bnz) si i — 1 (resp. si i 2) dans l'écriture
réduite de p2{g) G G (sur les générateurs donnés dans la définition de G) est

non nulle. Alors, 7 rencontre tous les F{ pour j — 1,... ,n2 avec un degré

d'intersection homologique non nul, et le fait 1 en découle.

FAIT 2. Pour n2 suffisamment grand, tout élément de C\ {resp. C2) est

disjoint de F2 (resp. F1

En effet, soit 7 un élément de C\ (resp. C2) qui rencontre F2 (resp. F\).
Le lacet 7 contient un sous-chemin géodésique disjoint de F1 (resp. F2)

partant d'un point de / (^o) et y revenant après avoir rencontré F2 (resp.

Fi). Un tel chemin est de longueur > ^n2. Or le diamètre de / (so) est

égal à 6. Donc, si n2 > ^, on peut tronquer 7 et obtenir un lacet de longueur

plus petit que L et rencontrant Fi (resp. F2) avec un nombre d'intersection

homologique non nul; ce qui est absurde par définition de L.
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FAIT 3. Pour n2 suffisamment grand, tout élément de Ci pour i — 1,2,

rencontre Fi en un unique point.

En effet, soit 7 un élément de Ct qui rencontre deux fois Ft. Soit <5/

le diamètre de F*. Si n2 > on peut tronquer 7 et obtenir un lacet de

longueur plus petite que L et rencontrant Fi avec un nombre d intersection

homologique non nul; ce qui est absurde par définition de L.

Dans la suite on suppose que n2 est choisi suffisamment grand de manière

à ce que les conclusions des faits 2 et 3 soient vérifiées et L > 2d. Les deux

premiers points du lemme 5 sont donc démontrés.

FAIT 4. Tout lacet 7 représenté dans 7Ti(M,Xo) Par un élément du noyau
de ps est d-réductible.

En effet un tel lacet 7 est homotope à un lacet de W ; le fait 4 résulte

donc de la définition de d.

Montrons le point 3). Montrons d'abord que C C C\ U C2. Les n2 — 1

préimages isométriques (de longueur < d) de 71 (resp. 72) sont représentées

par des éléments de 7ri(M,x0) dont les images par p3 sont les Vab~j (resp.

ajba~j) pour j l,...,w2 — 1. Donc d'après le fait 4, l'ensemble des

géodésiques d-réductibles est représenté dans ir\(M,x0) par le sous-groupe

p2l(H) où H est un sous-groupe normal de G contenant les tiab~J et les

aJba~J pour j 1,... n2 — 1. Soit 7 un élément de C. Soit g G G l'image par

P3 d'un représentant de 7 dans 7Ti(M,xo). Alors, g £ H et, dans l'écriture
réduite de g sur les générateurs de G, la somme des puissances des am- ou des

bni est non nulle. Donc 7 intersecte F1 ou F2 avec un nombre d'intersection

homologique non nul. Comme 7 est de longueur L, elle appartient à C\ UC2.

Montrons maintenant que Ci U C2 C C i.e. que les éléments de C\ U C2

ne sont pas d-réductibles. Soit 7 G C\ U C2. Supposons que 7 soit une

géodésique d-réductible. Alors 7 s'écrit comme un produit libre de lacets

librement homotopes à des géodésiques de longueur plus petite que d. Mais

7 intersecte F\ ou F2 en un unique point, donc une des géodésiques de

longueur d intersecte F1 ou F2 avec un degré d'intersection homologique
non nul, ce qui est impossible par minimalité de L. Le point 3) du lemme 5

est donc démontré.

Enfin le point 4) se déduit simplement du fait que tout élément de C passe

par un point de l'ensemble / (s0) qui est de diamètre 6.
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THÉORÈME 3. Soit Mo une variété hyperbolique compacte. On suppose

que Mo contient un cycle géodésique de codimension un. Alors Mo admet
deux revêtements finis isospectraux mais non isométriques.

Démonstration. Pour construire ces deux revêtements isospectraux on va
utiliser la méthode de Sunada (pour un survol introductif de l'isospectralité
et en particulier de la méthode de Sunada cf. [Brl]). D'après les lemmes 4

et 5, il existe un revêtement fini M de M0 comme dans le lemme 5 (dans la

suite on adopte les notations du lemme 5 et on suppose choisi L > 26).
On considère les graphes

Qx « X/Hx et g2 X/H2

où est le graphe de Cayley de SL(3,2) pour les générateurs

/0 1 1\ (\ 0 0\
A 0 1 0 } et £= 0 0 1,

\1 0 0/ \0 1 1 /
1 *

H\ est le sous-groupe de SL(3,2) constitué des matrices 0 *
Vo *

(l 0 0\
le sous-groupe de SL(3,2) constitué des matrices * * * I

V * * * /

Figure 3

Le graphe G\

On commence par construire un revêtement régulier de M : M de groupe de

Galois isomorphe à SL(3,2). La variété M contient deux sous-variétés F\ et

F2 auxquelles on sait associer un morphisme surjectif du groupe fondamental

de M sur le groupe libre de rang deux qui se surjecte sur SL(3,2). Soit
donc p4 la surjection de 7Ti(M) sur SL(3,2). On note M le revêtement fini
de M associé au sous-groupe pj1^}) de 7^(M). Le revêtement M peut
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Figure 4

Le graphe G2

aussi s'obtenir de la même manière que dans la démonstration du lemme 5 en

recollant la variété M -(7U F2)suivant le graphe La variété M ainsi

obtenue admet une action de SL(3,2) par isométries de la même manière

que SL(3,2) agit sur X. Maintenant, soient M/H\ et M2 M/H2.
Puisque l'action de SL(3,2) sur M est compatible avec son action sur X,
les variétés M\ et M2peuventaussi être obtenues en recollant des copies de

M - (Fi U F2) suivant les graphes Gi et Gi • On applique alors le théorème

suivant.

Théorème (Sunada [Sun]). Soit G un groupe fini qui agit librement sur

une variété riemannienne compacte M par isométries. Soient H\, H2 < G

deux sous-groupes vérifiant

\[g}^Hl\ \[g]nH2\

pour tout g G G (où [g] désigne la classe de conjugaison de g dans G).
Alors les deux quotients M\ — M/H\ et M2 — M/H2 sont isospectraux.

Il est classique (cf. [Brl]) que les groupes H2 < G SL(3,2)
vérifient la condition du théorème de Sunada. On en déduit que les variétés

hyperboliques M\ et M2 construites ci-dessus sont isospectrales.

Pour conclure il nous reste à montrer que les variétés M\ et M2 ne

sont pas isométriques. Pour ce faire on compte le nombre maximal di de

géodésiques simples de longueurs L qui ne sont pas d-réductibles et qui sont
deux à deux à distance <2L +26 dans Mt.

Chaque élément 7 de C admet 3 relevés dans chaque M/ pour i 1,2
dont un seul lui est isométrique; on le note 7De plus dans M\ il existe 71

et j[ des relevés de 7,7' G C à distance > 3L > 2L + 26 et dans M2 pour
tous 7,7' GC, 72 et 72 sont à distance < 2L + 26. Nous allons montrer
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que les géodésiques 7% pour 7 G C sont les seules géodésiques fermées de

longueur L qui ne sont pas d-réductibles dans Mt (i 1,2). En particulier
on aura montré que d\ ^ di et donc que M\ et M2 ne sont pas isométriques.

Soit À une géodésique simple fermée de longueur L dans M*. Si la

projection de À dans M rencontre un Fi avec un nombre d'intersection
homologique non nul alors elle appartient à C et la projection de revêtement
restreinte à À est une isométrie. En particulier À 7 pour un certain

7 G C. Si la projection de À dans M rencontre chaque F/ avec un nombre
d'intersection homologique nul, alors d'après le lemme 5 elle est d-réductible
et il en est de même pour À.

De la section précédente on tire immédiatement le corollaire suivant.

COROLLAIRE 3. Pour tout n, il existe des variétés hyperboliques isospectrales

non isométriques de dimension n (non nécessairement arithmétiques).

La littérature sur l'isospectralité est vaste (cf. [Brl]), signalons que les

premiers exemples de variétés hyperboliques isospectrales ont été obtenus

par M.-F. Vignéras [Vig] en dimension deux et trois à l'aide de variétés

arithmétiques. Depuis, la méthode de Sunada a permis de construire de

nombreux exemples en dimension deux. En grande dimension (n > 26),
R. Spatzier a montré [Sp], toujours à l'aide de la méthode de Sunada et
à l'aide du théorème de rigidité de Mostow, que toute variété hyperbolique

compacte est finiment revêtue par deux variétés hyperboliques isospectrales non

isométriques. Enfin en dimension trois, A. Reid [Re] a construit des exemples

non arithmétiques de variétés hyperboliques isospectrales non isométriques.

5. Petites valeurs propres de certaines variétés hyperboliques

Dans cette section, on s'intéresse au problème de l'existence de petites
valeurs propres.

On dira qu'une suite {Mm} de variétés hyperboliques converge
uniformément sur tout compact vers une variété hyperbolique M si pour tout

compact de M, pour m grand, il existe un compact Km C Mm isométrique
à K. Signalons que cette définition est plus forte que la notion habituelle de

convergence géométrique (cf. [CEG]). On appelle enfin variété tube de type

(n^k) le quotient Hn/A de l'espace hyperbolique H" par un réseau A de

Stab(H^) agissant librement sur H^.
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