Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 46 (2000)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PREMIER NOMBRE DE BETTI ET SPECTRE DU LAPLACIEN DE

CERTAINES VARIÉTÉS HYPERBOLIQUES

Autor: Bergeron, Nicolas

Kapitel: 3. Extension au cas des cycles généralisés

DOI: https://doi.org/10.5169/seals-64797

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

3. EXTENSION AU CAS DES CYCLES GÉNÉRALISÉS

Soit M une variété hyperbolique de volume fini de dimension n. Les théorèmes 1 et 2 de la section précédente admettent des généralisations dans le cas de cycles non compacts.

DÉFINITIONS. On appelle cycle géodésique généralisé de dimension l dans M la donnée d'une immersion propre $i\colon F\to M$ d'une variété F de dimension l dans M telle que pour tout x dans F, il existe un voisinage ouvert U de x dans F tel que i(U) soit une sous-variété totalement géodésique de M. On dira qu'un tel cycle se relève à un revêtement \widetilde{M} de M s'il existe un revêtement fini \widetilde{F} de F auquel i se relève en une application $\widetilde{i}\colon \widetilde{F}\to \widetilde{M}$.

Lorsque la variété M est compacte, les cycles géodésiques généralisés sont des cycles géodésiques. Dans la suite on suppose donc que M n'est pas compacte. Le lemme de Margulis ([Th], [CEG], [Rat]) implique que M est réunion d'une sous-variété compacte à bord M_0 et d'un nombre fini de composantes de la forme $V \times [0, +\infty[$ où V est une variété plate compacte de dimension n-1. Soit $i\colon F \to M$ un cycle géodésique généralisé de dimension l. De la même manière qu'au début de la démonstration du théorème l, on peut supposer que

$$F = \mathbf{H}^l / \Lambda$$
 avec $\Lambda = \Gamma \cap \operatorname{Stab}(\mathbf{H}^l)$

et que i est l'immersion canonique.

LEMME 3. La variété hyperbolique F est réunion d'une sous-variété compacte à bord F_0 et d'un nombre fini de composantes de la forme $W \times [0, +\infty[$ où W est une variété plate compacte de dimension l-1. En particulier, si $l \geq 2$, F est de volume fini. De plus, étant donnée une composante connexe $W \times [0, +\infty[$ de $F-F_0$, il existe une composante connexe $V \times [0, +\infty[$ de $M-M_0$ telle que la restriction de i à $W \times [0, +\infty[$ soit de la forme i(w,r)=(j(w),r) où $j\colon W\to V$ est un cycle géodésique.

Démonstration. Notons $F_0 = i^{-1}(M_0)$. La sous-variété F_0 est compacte à bord dans F. Chaque composante du bord de F_0 s'envoie dans une composante du bord de M_0 . Or i est propre donc F_0 n'a qu'un nombre fini de composantes de bord. Passons maintenant au revêtement universel \mathbf{H}^n . On identifie toujours \mathbf{H}^l avec le revêtement universel de F. Soit D un domaine de Dirichlet pour l'action de Λ sur \mathbf{H}^l . Soit D_0 l'ensemble des points de D au-dessus de F_0 .

Soit D_1 une composante connexe de $\overline{D-D_0}$. L'image de D_1 dans M est incluse dans une composante connexe de $M-M_0$ que nous noterons C. Le fait que C soit de la forme $V \times [0, +\infty)$ implique que

- (i) dans les coordonnées du demi-espace, on peut supposer que $D_1 = \Delta \times [a, +\infty)$ où Δ est inclus dans un domaine fondamental pour l'action de Γ_{∞} (le stabilisateur du point à l'infini) par isométries sur l'horosphère y = a (munie de sa structure euclidienne induite);
- (ii) l'action de Γ sur l'horoboule $\mathbf{E}^{n-1} \times [a, +\infty)$ respecte la structure produit; et
- (iii) $\Delta \subset \mathbf{E}^{l-1} \times \{a\} (\subset \mathbf{E}^{n-1} \times \{a\}).$

Alors, $\Lambda_{\infty} = \Gamma_{\infty} \cap \text{Isom}(\mathbf{E}^{l-1})$. Donc D_1 est au-dessus d'une composante de la forme $W \times [0, +\infty)$ où $W = \mathbf{E}^{l-1}/\Lambda_{\infty}$. Et l'immersion totalement géodésique canonique $j \colon W \to V = \mathbf{E}^{n-1}/\Gamma_{\infty}$ convient.

THÉORÈME 1'. Tout cycle géodésique généralisé dans une variété hyperbolique de volume fini se relève à un revêtement fini en un cycle dont l'image est une sous-variété plongée totalement géodésique.

Démonstration. On conserve les notations du début de cette section. Passons au revêtement universel \mathbf{H}^n . On identifie toujours \mathbf{H}^l avec le revêtement universel de F. Soit D un domaine de Dirichlet pour l'action de Λ sur \mathbf{H}^l . Soit D_0 l'ensemble des points de D au-dessus de F_0 . Le groupe Γ agit proprement sur \mathbf{H}^n et D_0 est compact donc $\{\gamma \in \Gamma \mid \gamma D_0 \cap D_0 \neq \emptyset\}$ est fini. Or le lemme 3 implique que $\{\gamma \in \Gamma \mid \gamma D \cap D \neq \emptyset\} = \{\gamma \in \Gamma \mid \gamma D_0 \cap D_0 \neq \emptyset\}$. On conclut alors de la même manière que dans la preuve du théorème 1. \square

Enfin la preuve du théorème 2 implique le théorème suivant.

THÉORÈME 2'. Tout cycle géodésique généralisé de codimension 1 dans une variété hyperbolique de volume fini admet deux relevés disjoints à un revêtement fini dont les images sont des sous-variétés plongées totalement géodésiques dont l'union est non séparante.

Comme à la section précédente, on peut remarquer que les conclusions du théorème 2' impliquent que le revêtement fini a un groupe fondamental qui se surjecte sur un groupe libre de rang deux.

Rappelons brièvement les constructions connues de variétés hyperboliques de volume fini (cf. [Vin]).

1. Variétés arithmétiques « standard » construites par Borel dans [Bo2]. Soit K un corps de nombres totalement réel de degré m sur \mathbf{Q} , \mathcal{O} son anneau des entiers et σ_1,\ldots,σ_m les plongements de K dans \mathbf{R} . Soit $f(x_1,x_2,\ldots,x_{n+1})=a_1x_1^2+\cdots+a_nx_n^2-a_{n+1}x_{n+1}^2$ une forme quadratique diagonale avec $a_i\in K$. On suppose que $\sigma_i f$ a pour signature (n,1) et que $\sigma_i f$ est définie positive pour $i=2,3,\ldots,m$. Le sous-groupe $\Gamma(f)$ de $\mathrm{GL}_{n+1}(\mathcal{O})$ préservant f s'identifie alors à un réseau de $\mathrm{O}(n,1)$ (cf. [Bo2]). Si $\Gamma\subset\Gamma(f)$ est un sous-groupe d'indice fini sans torsion inclus dans $\mathrm{PSO}(n,1)$, alors il agit librement sur H^n et l'espace quotient H^n/Γ est une variété arithmétique standard (de volume fini). Pour un tel groupe Γ soit $\Gamma_0\subset\Gamma$ le sous-groupe stabilisant le plan $x_1=0$. L'image de Γ_0 dans $\mathrm{PSO}(n,1)$ donne alors un cycle géodésique $\mathrm{H}^{n-1}/\Gamma_0\to\mathrm{H}^n/\Gamma$ peut-être généralisé.

COROLLAIRE 1. Les variétés hyperboliques arithmétiques construites par Borel dans [Bo2] ont un premier de Betti virtuel infini.

On a appelé premier nombre de Betti virtuel d'une variété M la borne supérieur de l'ensemble des premiers nombres de Betti des revêtements finis de M. Le corollaire 1 se déduit du théorème 2' en remarquant que le groupe libre de rang $2 \langle \alpha, \beta \rangle$ a un sous-groupe d'indice fini libre de rang $\geq N$ pour tout $N \in \mathbb{N}$.

- 2. Variétés hybrides. Dans [GPS], Gromov et Piateski-Shapiro présentent une nouvelle construction de variétés hyperboliques en découpant et en recollant des variétés arithmétiques standard suivant des sous-variétés (plongées) totalement géodésiques de codimension un. Par construction ces variétés contiennent une sous-variété totalement géodésique de codimension 1.
- 3. Groupes engendrés par des réflexions. Pour $n \ge 4$, tous les exemples connus de variétés hyperboliques (de volume fini) non arithmétiques sont soit des variétés hybrides soit des variétés obtenues comme quotient de \mathbf{H}^n par un groupe Γ commensurable à un groupe engendré par des réflexions (cf. [Vin]). À indice fini près on peut supposer que Γ est normalisé par une réflexion τ . Cette réflexion τ agit alors sur la variété \mathbf{H}^n/Γ et l'ensemble de ses points fixes forme une sous-variété totalement géodésique de codimension 1.

COROLLAIRE 2. Les variétés hyperboliques construites par Vinberg dans [Vin] ou par Gromov et Piateski-Shapiro dans [GPS] ont un premier nombre de Betti virtuel infini.

- 4. Variétés hyperboliques de dimension 3. En dimension trois, les variétés qui vérifient les hypothèses du théorème d'hyperbolisation de Thurston ou qui sont obtenues par le théorème de chirurgie de Dehn hyperbolique [Th] fournissent une myriade d'exemples de variétés hyperboliques pour lesquelles la conjecture de Thurston demeure ouverte. Dans [Lu1], Lubotzky pose la question de savoir si les 3-variétés hyperboliques non compactes de volume fini (dont on sait qu'elles vérifient la conjecture de Thurston, cf. [He]) admettent un revêtement fini dont le groupe fondamental se surjecte sur un groupe libre de rang deux. Signalons que, dans [CLR], Cooper, Long et Reid répondent par l'affirmative à ce problème.
- 5. Variétés arithmétiques « non standard ». En dimension impaire il existe des variétés arithmétiques non standard (toutes compactes). On en esquisse la construction à la section 5. Les théorèmes précédents ne s'appliquent pas à celles-ci en raison de l'absence de cycles géodésiques de codimension 1. La conjecture de Thurston est néanmoins vérifiée pour la plupart de ces variétés (cf. [Li], [RV], [LM] et [Lu2]).

4. VARIÉTÉS HYPERBOLIQUES ISOSPECTRALES

Soit M_0 une variété hyperbolique compacte de dimension n. On suppose que M_0 contient un cycle géodésique de dimension n-1. Le lemme suivant découle du théorème 2.

LEMME 4. Il existe un revêtement fini M de M₀ tel que

- 1) M contient deux sous-variétés plongées totalement géodésiques disjointes F_1 et F_2 ;
- 2) M contient deux lacets fermés disjoints γ_1 et γ_2 ;
- 3) pour i = 1, 2, γ_i rencontre F_i en un et un seul point;
- 4) les ensembles $\gamma_1 \cap F_2$ et $\gamma_2 \cap F_1$ sont vides;
- 5) il existe une isométrie φ de M qui permute F_1 et F_2 .

Démonstration. D'après le théorème 2, quitte à remplacer M_0 par un revêtement fini que nous noterons toujours M_0 , on peut supposer qu'il existe deux sous-variétés totalement géodésiques orientées F et V dans M_0 dont l'union est non séparante. Le nombre d'intersection homologique entre un lacet fermé de M_0 et la sous-variété V induit un morphisme surjectif p_1