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112 N. BERGERON

on applique ce lemme a la démonstration des théoremes 1 et 2. Dans une
troisieme section on traite le cas des variétés non compactes de volume fini
et on rappelle les diverses constructions connues de variétés hyperboliques de
volume fini en constatant que ces théorémes s’appliquent a un certain nombre
d’entre elles. Dans la quatrieme section on montre le théoréme 3 a I’aide du
théoreme 2 et de la méthode de Sunada [Sun]. Dans la cinquiéme et derniere
section, étant donné une variété hyperbolique M de volume fini on construit,
a ’aide du lemme de la premicre section, une suite de revétements finis de M
qui converge sur tout compact vers une variété que 1’on appelle variété tube.
A T’aide de travaux de Sullivan [Sull], on peut majorer la premiére valeur
propre du laplacien de cette variété tube, d’ou I’on déduit le théoreme 4. On
conclut cet article par un appendice consacré au calcul explicite du spectre
des variétés tubes H" /A ot A est un réseau cocompact de Stab (H*) (k < n).
Calcul élémentaire qui permet notamment d’éviter le recours aux travaux de
Sullivan dans la démonstration du théoreme 4.

REMERCIEMENTS. Le théoréme 3 répond a une question de R. Brooks, qui
a bien voulu s’intéresser aux premieres versions de cet article; je I’en remercie.
La démonstration du théoréme 4 doit beaucoup a I’article [BLS], qui m’a été
expliqué par M. Burger; je I’en remercie. Merci a Damien Gaboriau pour sa
relecture attentive. Une erreur m’a été aimablement signalée et corrigée par le
referee, je ’en remercie. Enfin, je suis particulierement redevable a J.-P. Otal
pour ses nombreux conseils et encouragements.

1. TOPOLOGIE DES SOUS-GROUPES D’INDICE FINI
ET GROUPES ALGEBRIQUES

On appelle topologie des sous-groupes d’indice fini d’un groupe I' (cf.
[S]), la topologie sur I" pour laquelle les sous-groupes d’indice fini de I
forment une base de voisinages de 1’élément neutre e. On peut restreindre
la base de voisinages de e aux sous-groupes distingués d’indices finis de I
(quitte a prendre l’intersection des conjugués). Notons H* I’adhérence d’un
sous-groupe H de I' pour cette topologie, on a:

H* = () HN.

NIl
[I:N]<4+c0

Enfin, on dit d’un groupe de type fini I' qu’il est résiduellement fini si
I’élément neutre de I" est fermé pour la topologie des sous-groupes d’indices
finis de I".
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LEMME 1. Soient ai,...,a, des éléments non nuls d’un sous-anneau
A de C finiment engendré sur Z. Alors, il existe un corps fini F et un
morphisme 1n: A — F tels que pour tout i, n(a;) # 0.

Démonstration. Le théoréme de normalisation de Noether (cf. [AM; p.70])
affirme qu’il existe s € Z, s # 0 et x1,...,x; dans A qui sont algébriquement
indépendants sur Z[%] tels que A est entier sur B = Z[%][xl,...,xk]. Soit
a=ay - -a,.Soit p un entier premier qui ne divise pas s. On a un morphisme
Z[%] — F, que I’on peut clairement étendre 4 B en envoyant les x; sur des
¢léments quelconques. Puis, quitte a prendre un p plus grand, on peut supposer
que les coefficients du polynéme annulateur de a sur B sont tous envoyés sur
des €léments non nuls de F,. Ce polyndbme s’envoie alors sur un polyndme
sur ¥, qui a une racine non triviale dans une certaine extension de F,. Ainsi,
on peut étendre le morphisme B — F, en un morphisme Bla] — F,(a’)
de maniere a ce que I'image de a soit un élément non nul. Comme A est
finiment engendré, de méme maniere, on peut obtenir n: A — F ou F est
une extension finie de F,. [J

On a alors (cf. aussi [MS]):

LEMME PRINCIPAL. Soient H un sous-groupe algébrigue de GLy(R) et
I' un sous-groupe de GLy(R) de type fini. Notons A = HNT. Alors A est
fermé dans " pour la topologie des sous-groupes d’indices finis de T, i.e.

A" =A.

Démonstration. 11 suffit de montrer que A* C H. Soit x € " ; nous allons
montrer que si x ¢ H, alors x & A*.

Puisque H est Zariski-fermé dans GLy(R) et x € GLy(R), il existe un
polyndme P sur la variété algébrique GLy(C) identiquement nul sur H et
tel que P(x) soit non nul. Le groupe I' étant de type fini, il existe un sous-
anneau A de C finiment engendré sur Z tel que I' soit un sous-groupe de
GLn(A) et que P soit a coefficients dans A. Le lemme 1 implique I’existence
d’un morphisme 7: GLy(A) — GLy(F) tel que P(#H(x)) # 0 (ou P est
le polyndme a coefficients dans F obtenu en appliquant 1 aux coefficients
de P). En se restreignant & I", on obtient donc un morphisme ¥ de I'" dans
GLn(F) qui est un groupe fini. De plus, P(¥(A)) = 0 (car A C H). Donc,
Y(x) n’appartient pas a (A). Soit alors L = ker. Le sous-groupe L est
distingué et d’indice fini dans I, et x ¢ AL (car ¥(AL) = (A)). Comme
A* C AL, x n’appartient pas &3 A*. [J
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Appliqué a H = {e}, le lemme principal redonne le fait (dii & Mal’cev
[Ma]) que tout sous-groupe de GLy(R) de type fini est résiduellement fini.

2. SUR LA TOPOLOGIE DES CYCLES GEODESIQUES

Nous allons appliquer le lemme principal aux cycles géodésiques dans des
variétés hyperboliques.

DEFINITIONS.  Variétés hyperboliques (cf. [Th], [CEG] ou [Rat]). Soit
H” Vespace hyperbolique, i.e. I'unique variété riemannienne de dimension
n simplement connexe, complete et de courbure constante égale a —1.
Une variété hyperbolique (de dimension n) M est une variété riemannienne
complete de courbure constante égale a —1. Une telle variété est isométrique
au quotient H"/T" de I’espace hyperbolique par un groupe kleinien, i.e. un
sous-groupe discret sans torsion de Isom(H"). Par commodité, toutes les
variétés hyperboliques que nous considérerons seront supposées orientées.
Alors, M = H"/T" ou T" est un groupe kleinien contenu dans Isom™ (H"), le
sous-groupe des isométries préservant 1’orientation de H". Rappelons que le
groupe Isom™ (H") s’identifie via le modele de I’hyperboloide au sous-groupe
PSO(n,1) de O(n,1) (d’indice 4) constitué des matrices de déterminant 1
préservant la nappe supérieure de 1’hyperboloide. Etant donné un groupe
kleinien, on notera L(I") Uensemble limite de T, i.e. la fermeture, dans la
sphére 4 I'infini S”_!, de I’ensemble des points d’accumulation d’une orbite
quelconque de I' dans H".

THEOREME 1. Tout cycle géodésique dans une variété hyperbolique dont
le groupe fondamental est de type fini se reléeve a un revétement fini en un
cycle dont 'image est une sous-variété plongée totalement géodésique.

REMARQUE. Le théoreme 1 était déja connu en dimension deux [Sc] et
en dimension trois [Lo].

Démonstration. Soit M = H"/T" une variété hyperbolique avec I' un
groupe kleinien de type fini. Soit ip: Fo — M un cycle géodésique de
dimension [. Soit zo FO — H" un relevé de iy au revétement universel Fo
de Fy (que I’on suppose connexe). Puisque ip est une immersion localement
totalement géodésique, il en est de méme pour io. L’application iy est propre
donc %(ﬁo) est complet dans H". Donc %(FO) coincide avec un sous-espace
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