Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 46 (2000)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: PREMIER NOMBRE DE BETTI ET SPECTRE DU LAPLACIEN DE
CERTAINES VARIETES HYPERBOLIQUES

Autor: Bergeron, Nicolas

DOl: https://doi.org/10.5169/seals-64797

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-64797
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 46 (2000), p. 109-137

PREMIER NOMBRE DE BETTI ET SPECTRE DU LAPLACIEN
DE CERTAINES VARIETES HYPERBOLIQUES

par Nicolas BERGERON

ABSTRACT. The notion of an I-geodesic cycle in a hyperbolic manifold generalises,
in dimension I, that of a closed geodesic. In this note we study some topological
properties of such cycles. Then we show that the existence of geodesic cycles of
codimension 1 allows one to prove that there exist isospectral non isometric hyperbolic
manifolds of every dimension. Finally, we give a simple criterion using geodesic cycles
that ensures the existence of small eigenvalues of the Laplace operator in a finite cover
of a hyperbolic manifold.

INTRODUCTION

Soit M une variété riemannienne.

DEFINITIONS. On appelle cycle géodésique de dimension | dans M la
donnée d’une immersion i: F — M d’une variété compacte F de dimension
| dans M telle que pour tout x dans F, il existe un voisinage ouvert U de
x dans F tel que i(U) soit une sous-variété totalement géodésique de M.
On dira qu’un tel cycle se releve a un revétement M de M s’il existe un
revétement fini F de F auquel i se reléve en une application iF—>M.

Dans cet article on étudie I'influence de I’existence de tels cycles dans les
variétés hyperboliques (i.e. les variétés riemanniennes de courbure constante
€gale a —1), tant sur le plan topologique que géométrique. Notre premier
théoréme est une propriété topologique de ces cycles (une généralisation en
dimension quelconque de résultats de Scott [Sc] et de Long [Lo]).
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THEOREME 1. Tout cycle géodésique dans une variété hyperbolique dont
le groupe fondamental est de type fini se reléeve a un revétement fini en un
cycle dont I'image est une sous-variété plongée totalement géodésique.

On connait peu de choses sur la topologie des variétés hyperboliques. 1l
est donc naturel de s’intéresser dans un premier temps a leur homologie.
Fixons-nous une variété hyperbolique M de volume fini de dimension n. Une
conjecture attribuée, dans [Bol], a Thurston affirme que M a un revétement fini
N avec un premier nombre de Betti non nul, b;(N) > 0. Récemment, Lubotzky
[Lul] a montré, en utilisant la théorie de Bass-Serre d’actions de groupes sur
les arbres, que si M contient une sous-variété (plongée) totalement géodésique
de codimension 1, M vérifie la conjecture de Thurston. Lubotzky montre plus
précisément que M admet un revétement fini dont le groupe fondamental se
surjecte sur un groupe libre de rang 2. On peut en fait montrer le théoreme
suivant.

THEOREME 2. Tout cycle géodésique de codimension 1 dans une variété
hyperbolique de volume fini admet deux relevés disjoints a un revétement fini
dont les images sont deux sous-variétés plongées totalement géodésiques dont
I’union est non séparante.

Lorsque la variété ambiante est non compacte, on peut étendre le théoréme 2
a des cycles généralisés de volume fini. En particulier on obtient une générali-
sation du théoréme de Lubotzky, et les corollaires suivants (on dit d’une variété
qu’elle a un premier nombre de Betti virtuel infini si pour tout entier N > 0,
elle admet un revétement fini avec un premier nombre de Betti supérieur a N).

COROLLAIRE 1. Les variétés hyperboliques arithmétiques construites par
Borel dans [Bo2] ont un premier nombre de Betti virtuel infini.

COROLLAIRE 2. Les variétés hyperboliques non arithmétiques construites
par Vinberg dans [Vin] ou par Gromov et Piateski-Shapiro dans [GPS] ont
un premier nombre de Betti virtuel infini.

L’existence de cycles géodésiques dans M a aussi des conséquences pour
le spectre de M et de ses revétements.

Notre troisieme théoreme est le suivant:




PREMIER NOMBRE DE BETTI ET SPECTRE DU LAPLACIEN 111

THEOREME 3. Soit M une variété hyperbolique compacte de dimension n.
Si M contient un cycle géodésique de dimension n—1, alors M admet deux
revétements finis My et M, isospectraux mais non isométriques.

COROLLAIRE 3. Pour tout n, il existe des variétés hyperboliques isospec-
trales non isométriques de dimension n (non nécessairement arithmétiques).

Les premiers exemples de variétés hyperboliques isospectrales non iso-
métriques ont été construits par M.-F. Vignéras [Vig] en dimensions 2 et 3;
ce sont des variétés arithmétiques. R. Spatzier dans [Sp] a montré que pour
n > 26 toute variété hyperbolique vérifie les conclusions du théoréme 3.
Enfin récemment A. Reid [Re] a construit des exemples non arithmétiques en
dimension 3.

Dans [R], Randol pose le probleme de I’existence de variétés hyperboliques
compactes avec de petites valeurs propres, i.e. des valeurs propres du laplacien
inférieures 2 (55—1)2 L existence de telles valeurs propres influe notamment sur
le comportement asymptotique du nombre Nr(x,y) (pour T proche de I’infini)
de points de I’espace hyperbolique H" appartenant a la boule hyperbolique
centrée en x de rayon T et se projetant dans M sur le méme point que y.

Randol montre par exemple que, pour n = 3, la variance de Nr(x,y) est,
e(1+a)T

a1l + a?)
pour un certain a = a(M) €]0,1[) si M a de petites valeurs propres et est

un O(7e") sinon. Dans [R], Randol montre qu’une variété hyperbolique qui a
un premier nombre de Betti non nul admet un revétement fini avec de petites
valeurs propres (en fait arbitrairement petites). On peut démontrer un critére
simple d’existence de petites valeurs propres dans un revétement fini.

pour 7 proche de I’infini, de I'ordre de (2 une constante pres et

THEOREME 4. Si M contient un cycle géodésique de dimension k > il
alors M admet un revétement fini avec de petites valeurs propres.

Ce critere simple permet notamment de montrer que toutes les variétés
hyperboliques compactes connues de dimension n > 6 (n # 7) admettent des

revétements finis avec de petites valeurs propres, sans faire appel aux difficiles
avancé€es vers la conjecture de Thurston.

Organisation de ’article. La premiere section est consacrée & la démons-
tration d’un lemme «a la Selberg» qui généralise le fait que tout sous-groupe
de GL,(R) de type fini est résiduellement fini. Dans une deuxime section,
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on applique ce lemme a la démonstration des théoremes 1 et 2. Dans une
troisieme section on traite le cas des variétés non compactes de volume fini
et on rappelle les diverses constructions connues de variétés hyperboliques de
volume fini en constatant que ces théorémes s’appliquent a un certain nombre
d’entre elles. Dans la quatrieme section on montre le théoréme 3 a I’aide du
théoreme 2 et de la méthode de Sunada [Sun]. Dans la cinquiéme et derniere
section, étant donné une variété hyperbolique M de volume fini on construit,
a ’aide du lemme de la premicre section, une suite de revétements finis de M
qui converge sur tout compact vers une variété que 1’on appelle variété tube.
A T’aide de travaux de Sullivan [Sull], on peut majorer la premiére valeur
propre du laplacien de cette variété tube, d’ou I’on déduit le théoreme 4. On
conclut cet article par un appendice consacré au calcul explicite du spectre
des variétés tubes H" /A ot A est un réseau cocompact de Stab (H*) (k < n).
Calcul élémentaire qui permet notamment d’éviter le recours aux travaux de
Sullivan dans la démonstration du théoreme 4.

REMERCIEMENTS. Le théoréme 3 répond a une question de R. Brooks, qui
a bien voulu s’intéresser aux premieres versions de cet article; je I’en remercie.
La démonstration du théoréme 4 doit beaucoup a I’article [BLS], qui m’a été
expliqué par M. Burger; je I’en remercie. Merci a Damien Gaboriau pour sa
relecture attentive. Une erreur m’a été aimablement signalée et corrigée par le
referee, je ’en remercie. Enfin, je suis particulierement redevable a J.-P. Otal
pour ses nombreux conseils et encouragements.

1. TOPOLOGIE DES SOUS-GROUPES D’INDICE FINI
ET GROUPES ALGEBRIQUES

On appelle topologie des sous-groupes d’indice fini d’un groupe I' (cf.
[S]), la topologie sur I" pour laquelle les sous-groupes d’indice fini de I
forment une base de voisinages de 1’élément neutre e. On peut restreindre
la base de voisinages de e aux sous-groupes distingués d’indices finis de I
(quitte a prendre l’intersection des conjugués). Notons H* I’adhérence d’un
sous-groupe H de I' pour cette topologie, on a:

H* = () HN.

NIl
[I:N]<4+c0

Enfin, on dit d’un groupe de type fini I' qu’il est résiduellement fini si
I’élément neutre de I" est fermé pour la topologie des sous-groupes d’indices
finis de I".
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LEMME 1. Soient ai,...,a, des éléments non nuls d’un sous-anneau
A de C finiment engendré sur Z. Alors, il existe un corps fini F et un
morphisme 1n: A — F tels que pour tout i, n(a;) # 0.

Démonstration. Le théoréme de normalisation de Noether (cf. [AM; p.70])
affirme qu’il existe s € Z, s # 0 et x1,...,x; dans A qui sont algébriquement
indépendants sur Z[%] tels que A est entier sur B = Z[%][xl,...,xk]. Soit
a=ay - -a,.Soit p un entier premier qui ne divise pas s. On a un morphisme
Z[%] — F, que I’on peut clairement étendre 4 B en envoyant les x; sur des
¢léments quelconques. Puis, quitte a prendre un p plus grand, on peut supposer
que les coefficients du polynéme annulateur de a sur B sont tous envoyés sur
des €léments non nuls de F,. Ce polyndbme s’envoie alors sur un polyndme
sur ¥, qui a une racine non triviale dans une certaine extension de F,. Ainsi,
on peut étendre le morphisme B — F, en un morphisme Bla] — F,(a’)
de maniere a ce que I'image de a soit un élément non nul. Comme A est
finiment engendré, de méme maniere, on peut obtenir n: A — F ou F est
une extension finie de F,. [J

On a alors (cf. aussi [MS]):

LEMME PRINCIPAL. Soient H un sous-groupe algébrigue de GLy(R) et
I' un sous-groupe de GLy(R) de type fini. Notons A = HNT. Alors A est
fermé dans " pour la topologie des sous-groupes d’indices finis de T, i.e.

A" =A.

Démonstration. 11 suffit de montrer que A* C H. Soit x € " ; nous allons
montrer que si x ¢ H, alors x & A*.

Puisque H est Zariski-fermé dans GLy(R) et x € GLy(R), il existe un
polyndme P sur la variété algébrique GLy(C) identiquement nul sur H et
tel que P(x) soit non nul. Le groupe I' étant de type fini, il existe un sous-
anneau A de C finiment engendré sur Z tel que I' soit un sous-groupe de
GLn(A) et que P soit a coefficients dans A. Le lemme 1 implique I’existence
d’un morphisme 7: GLy(A) — GLy(F) tel que P(#H(x)) # 0 (ou P est
le polyndme a coefficients dans F obtenu en appliquant 1 aux coefficients
de P). En se restreignant & I", on obtient donc un morphisme ¥ de I'" dans
GLn(F) qui est un groupe fini. De plus, P(¥(A)) = 0 (car A C H). Donc,
Y(x) n’appartient pas a (A). Soit alors L = ker. Le sous-groupe L est
distingué et d’indice fini dans I, et x ¢ AL (car ¥(AL) = (A)). Comme
A* C AL, x n’appartient pas &3 A*. [J
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Appliqué a H = {e}, le lemme principal redonne le fait (dii & Mal’cev
[Ma]) que tout sous-groupe de GLy(R) de type fini est résiduellement fini.

2. SUR LA TOPOLOGIE DES CYCLES GEODESIQUES

Nous allons appliquer le lemme principal aux cycles géodésiques dans des
variétés hyperboliques.

DEFINITIONS.  Variétés hyperboliques (cf. [Th], [CEG] ou [Rat]). Soit
H” Vespace hyperbolique, i.e. I'unique variété riemannienne de dimension
n simplement connexe, complete et de courbure constante égale a —1.
Une variété hyperbolique (de dimension n) M est une variété riemannienne
complete de courbure constante égale a —1. Une telle variété est isométrique
au quotient H"/T" de I’espace hyperbolique par un groupe kleinien, i.e. un
sous-groupe discret sans torsion de Isom(H"). Par commodité, toutes les
variétés hyperboliques que nous considérerons seront supposées orientées.
Alors, M = H"/T" ou T" est un groupe kleinien contenu dans Isom™ (H"), le
sous-groupe des isométries préservant 1’orientation de H". Rappelons que le
groupe Isom™ (H") s’identifie via le modele de I’hyperboloide au sous-groupe
PSO(n,1) de O(n,1) (d’indice 4) constitué des matrices de déterminant 1
préservant la nappe supérieure de 1’hyperboloide. Etant donné un groupe
kleinien, on notera L(I") Uensemble limite de T, i.e. la fermeture, dans la
sphére 4 I'infini S”_!, de I’ensemble des points d’accumulation d’une orbite
quelconque de I' dans H".

THEOREME 1. Tout cycle géodésique dans une variété hyperbolique dont
le groupe fondamental est de type fini se reléeve a un revétement fini en un
cycle dont 'image est une sous-variété plongée totalement géodésique.

REMARQUE. Le théoreme 1 était déja connu en dimension deux [Sc] et
en dimension trois [Lo].

Démonstration. Soit M = H"/T" une variété hyperbolique avec I' un
groupe kleinien de type fini. Soit ip: Fo — M un cycle géodésique de
dimension [. Soit zo FO — H" un relevé de iy au revétement universel Fo
de Fy (que I’on suppose connexe). Puisque ip est une immersion localement
totalement géodésique, il en est de méme pour io. L’application iy est propre
donc %(ﬁo) est complet dans H". Donc %(FO) coincide avec un sous-espace
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totalement géodésique de dimension [ dans H". L’application Io est alors un
revétement d’image simplement connexe donc un homéomorphisme sur son
image. Et, quitte & conjuguer, on peut identifier le revétement universel de
Fy avec le sous-espace H' de H". De plus, i est injective au niveau des
groupes fondamentaux; on note Ag = ig.(mFp). On a alors

Ao C T'N Stab (H),

ou Stab (HY), le stabilisateur de H' dans Isom™ (H"), est égal a un sous-groupe
d’indice fini du produit du groupe O(l, 1) par un groupe de rotations compact
que ’on note C. Soit A = I'N Stab (H’). Montrons que la variété F = H'/A
(qui est finiment revétue par Fp) se plonge dans un revétement fini de la
variété M = H"/T". Soit i I'immersion canonique de F dans M. Soit D un
domaine fondamental (compact) pour ’action de A sur H'. L’action de T’
sur H" est propre. Donc I’ensemble

E={yeTl|yDND + o}

est fini. En particulier E — A est un sous-ensemble fini de I". Mais, d’apres
le lemme principal (appliqué a H =O(,1) x C et I' =T"),

A=A,

pour la topologie des sous-groupes d’indice fini de I". Donc, il existe un sous-
groupe ' d’indice fini dans T qui contient A et tel que ENT = ENA. Alors,
M=H"/ T est un revétement fini de M et contient F comme sous-variété
plongée totalement géodésique. Or le plongement canonique i de F dans M
releve i. Donc le cycle donné par iy se reléve & M en un cycle dont I’image
égale & i(F) est plongée. [

REMARQUE. En remplacant Stab(H)) par Isom™(H!) x C dans la
démonstration du théoreme 1, on peut montrer que sous les hypothéses du

théoréme 1 on peut relever le cycle en un cycle dont I’image est une sous-
variété orientée.

THEOREME 2. Tout cycle géodésique de codimension 1 dans une variété
hyperbolique de volume fini admet deux relevés disjoints a un revétement fini

dont les images sont des sous-variétés plongées totalement géodésiques dont
’'union est non séparante.

Démonstration. Soit M une variété hyperbolique de volume fini de
dimension n qui contient un cycle géodésique de dimension n — 1. Le
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groupe fondamental de M est de type fini. D’apres le théoreme 1, on peut
donc supposer que M contient une sous-variété orientée plongée totalement
géodésique F =H""!/A (i.e. que le cycle est d’image plongée dans M).

Montrons que quitte a passer a un revétement fini de M, on peut supposer
que F est non séparante (i.e. que le cycle se reléve en un cycle non homologue
a zéro). Supposons que F sépare M en M, et M_. Le théoréme de Van
Kampen implique que le groupe fondamental I' de M se décompose en un
produit amalgamé

I'=Ax*\B,

ou A (resp. B) est le groupe fondamental de M, (resp. M_). Soient a € A
et b € B deux éléments de I' dont aucune puissance n’appartienne a A.
Comme dans la démonstration du théoreme 1, le lemme principal implique
que le sous-groupe A est fermé pour la topologie des sous-groupes d’indice
fini de T'". Soit K un sous-groupe de I' d’indice fini tel que K contienne A
mais ne contienne ni a ni b. Soit ' I'intersection de tous les conjugués de
K dans T'. Alors, M = H" /f est un revétement fini de M auquel la variété
F se releve en une sous-variété non séparante.

Cl

Fy F> F3 . F;

FIGURE 1

F; est non séparante

‘En effet, soient «, § deux lacets dans M représentant respectivement
a et b et basés en un point xp € F. On construit par récurrence une
famille finie de relevés de o et f: {c; = a1, ¢ = Ba, ..., 0 = ¢} (ou
{1 = a1, 00 = 52, s nsy 6 &= E;}) et | relevés disjoints de F: Fy,...,F;
(I € N) de maniére a ce que ¢; joigne F; a F;yy pour i <[ et ¢; joigne F;
a F;, pour un certain 1 <ip <[ (le revétement est fini). Puisque ni o ni
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ne se releve, ip < [ et le lacet ¢, . cj, 11 - .. ¢; a un degré d’intersection congru
a2 1 modulo 2 avec F;. Dans la suite on suppose que F est non s€parante
dans M.

Concluons la démonstration du théoréme 2. On a un morphisme canonique
p de T sur Z dont le noyau contient A, le groupe fondamental de F :
0 - (A Oker(p) - T' — Z — 0. Le noyau ker(p) de p est distingué
dans I', donc son ensemble limite L(ker(p)) coincide avec celui de I':
S7—=! = L(T'). Mais puisque A C Stab(H""!), I’ensemble limite L(A) de A
est inclus dans S”_%, donc ker (p) contient un élément a de I dont aucune
puissance n’appartient 2 A. Soit b € T" tel que p(b) = 1; dans la suite
on suppose que b peut étre représenté par un lacet rencontrant ' en un
unique point. On applique le lemme principal pour obtenir 1’existence d’un
sous-groupe I de I d’indice fini ne contenant pas a. La variété M =H" /I‘
est un revétement fini de M. Et la variété F admet deux relevés disjoints
dans M dont 'union est non séparante. En effet, soient o un lacet dans M
représentant a et B un lacet dans M représentant b et rencontrant F en un
unique point. Soit ¢; un relevé de o allant d’un relevé F; de F a un relevé

disjoint F, de F. On construit par récurrence des relevés c;, ..., ¢; de (8
et des relevés disjoints F3, ..., F; de F (I € N) de manieére a ce que c;

soit un chemin allant de F; a F;; pour i <[ et ¢; un chemin de F; a Fj,
avec 1 <ip <I. Le lacet cj,.cijy41...c; a un nombre d’intersection égal a 1
modulo 2 avec F; et a 0 modulo 2 avec F;. Donc F; UF; est non séparante

dans M. il

COROLLAIRE. Soit M une variété hyperbolique de volume fini contenant
un cycle géodésique de codimension 1. Alors le groupe fondamental de M

contient un sous-groupe d’indice fini qui se surjecte sur un groupe libre de
rang deux.

Démonstration. Conservons les notations de la démonstration précédente.
Alors, ' = mM se surjecte sur un groupe libre de rang deux. En effet, soient
i & F1 x[—1,1] et C; = F; x [—1,1] deux v0131nages colliers de Fy et F;
dans M. On construit une application continue de M sur un bouquet de deux
cercles en projetant tous les points de M — (C; U C;) sur le point base du
bouquet et chaque intervalle x x [—1, 1] sur la premitre boucle lorsque x € F;
et sur la deuxieme lorsque x € F;. Au niveau des groupes fondamentaux, cette
application induit une surjection de T sur le groupe libre de rang deux. En
particulier sous les hypothéses du théoréme 2, M admet un revétement fini
dont le groupe fondamental se surjecte sur un groupe libre de rang deux.
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3. EXTENSION AU CAS DES CYCLES GENERALISES

Soit M une variété hyperbolique de volume fini de dimension n. Les
théoremes 1 et 2 de la section précédente admettent des généralisations dans
le cas de cycles non compacts.

DEFINITIONS. On appelle cycle géodésique généralisé de dimension 1
dans M la donnée d’une immersion propre i: F — M d’une variété F de
dimension [ dans M telle que pour tout x dans F, il existe un voisinage
ouvert U de x dans F tel que i(U) soit une sous-variété totalement géodésique
de M. On dira qu'un tel cycle se reléve a un revétement M de M s’il existe
un revétement fini F de F auquel i se reléve en une application : F—M.

Lorsque la variété M est compacte, les cycles géodésiques généralisés
sont des cycles géodésiques. Dans la suite on suppose donc que M n’est
pas compacte. Le lemme de Margulis ([Th], [CEG], [Rat]) implique que
M est réunion d’une sous-variété compacte a bord M, et d’un nombre
fini de composantes de la forme V X [0,4oco[ ou V est une variété plate
compacte de dimension n— 1. Soit i: F — M un cycle géodésique généralisé
de dimension [. De la méme mani¢re qu’au début de la démonstration du
théoreme 1, on peut supposer que

F=H/A avec A=TnStabH)

et que i est ’immersion canonique.

LEMME 3. La variété hyperbolique F est réunion d’une sous-variété
compacte a bord Fy et d’'un nombre fini de composantes de la forme
W x [0, 4oco[ ou W est une variété plate compacte de dimension [ — 1.
En particulier, si | > 2, F est de volume fini. De plus, étant donnée une
composante connexe W x[0, +oo[ de F—Fy, il existe une composante connexe
V x [0, +0o[ de M — My telle que la restriction de i a W x [0, +4o0o[ soit de
la forme (w,r) = (j(w),r) on j: W — V est un cycle géodésique.

Démonstration. Notons Fy = i~'(Mp). La sous-variété F, est compacte a
bord dans F. Chaque composante du bord de Fy s’envoie dans une composante
du bord de My. Or i est propre donc Fp n’a qu’un nombre fini de composantes
de bord. Passons maintenant au revétement universel H”. On identifie toujours
H' avec le revétement universel de F. Soit D un domaine de Dirichlet pour
’action de A sur H'. Soit Do I’ensemble des points de D au-dessus de Fj.
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Soit D; une composante connexe de D — Dy. L'image de D dans M est
incluse dans une composante connexe de M — My que nous noterons C. Le
fait que C soit de la forme V x [0, 4-00) implique que

(i) dans les coordonnées du demi-espace, on peut supposer que D; =
A x [a, +00) ol A est inclus dans un domaine fondamental pour I’action
de T», (le stabilisateur du point a I’infini) par isométries sur I’horosphere
y = a (munie de sa structure euclidienne induite);

(ii) Yaction de I' sur I’horoboule E'~! x [a,+00) respecte la structure
produit; et

(ii) A C E! x {a}(C B! x {a}).

Alors, Ao = oo N Isom(E!™1). Donc D; est au-dessus d’une composante
de la forme W x [0,4+00) ot W = E'"!/A . Et I'immersion totalement
géodésique canonique j: W — V = E*"! /T, convient. [J

THEOREME 1'.  Tout cycle géodésique généralisé dans une variété hyper-
bolique de volume fini se reléeve a un revétement fini en un cycle dont ['image
est une sous-variété plongée totalement géodésique.

Démonstration. On conserve les notations du début de cette section. Pas-
sons au revétement universel H”. On identifie toujours H' avec le revétement
universel de F. Soit D un domaine de Dirichlet pour I’action de A sur H'.
Soit Dy I’ensemble des points de D au-dessus de Fy. Le groupe I" agit propre-
ment sur H" et Dy est compact donc {y €I | yDoN Dy # @} est fini. Or le
lemme 3 implique que {y €T |yDND# @} ={yeTl |yDy N Dy # T}.
On conclut alors de la méme maniére que dans la preuve du théoréeme 1. [

Enfin la preuve du théoreme 2 implique le théoréme suivant.

THEOREME 2'. Tout cycle géodésique généralisé de codimension 1 dans
une variété hyperbolique de volume fini admet deux relevés disjoints a un
revétement fini dont les images sont des sous-variétés plongées totalement
géodésiques dont ’union est non séparante.

Comme a la section précédente, on peut remarquer que les conclusions du
théoreme 2’ impliquent que le revétement fini a un groupe fondamental qui
se surjecte sur un groupe libre de rang deux.

Rappelons brievement les constructions connues de variétés hyperboliques
de volume fini (cf. [Vin]).
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1. Variétés arithmétiques « standard » construites par Borel dans [Bo2].
Soit K un corps de nombres totalement réel de degré m sur Q, O son
anneau des entiers et o01,...,0, les plongements de K dans R. Soit
fO1, %2, Xng1) = a1x} + -+ + apXi — apyixa,; une forme quadratique
diagonale avec a; € K. On suppose que °'f a pour signature (n, 1) et que %if
est définie positive pour i = 2,3,...,m. Le sous-groupe I'(f) de GL,4:(O)
préservant f s’identifie alors a un réseau de O(n, 1) (cf. [Bo2]). Si I C I'(f)
est un sous-groupe d’indice fini sans torsion inclus dans PSO(n, 1), alors il
agit librement sur H" et ’espace quotient H"/T" est une variété arithmétique
standard (de volume fini). Pour un tel groupe I' soit I'y C I' le sous-groupe
stabilisant le plan x; = 0. L'image de I'y dans PSO(n,1) donne alors un
cycle géodésique H*~! /Ty — H"/T" peut-étre généralisé.

COROLLAIRE 1. Les variétés hyperboliques arithmétiques construites par
Borel dans [Bo2] ont un premier de Betti virtuel infini.

On a appelé premier nombre de Betti virtuel d’une variété M la borne
supérieur de I’ensemble des premiers nombres de Betti des revétements finis
de M. Le corollaire 1 se déduit du théoreme 2’ en remarquant que le groupe
libre de rang 2 (a, 8) a un sous-groupe d’indice fini libre de rang > N pour
tout N € N.

2. Variétés hybrides. Dans [GPS], Gromov et Piateski-Shapiro présentent
une nouvelle construction de variétés hyperboliques en découpant et en recol-
lant des variétés arithmétiques standard suivant des sous-variétés (plongées)
totalement géodésiques de codimension un. Par construction ces variétés
contiennent une sous-variété totalement géodésique de codimension 1.

3. Groupes engendrés par des réflexions. Pour n > 4, tous les exemples
connus de variétés hyperboliques (de volume fini) non arithmétiques sont soit
des variétés hybrides soit des variétés obtenues comme quotient de H" par un
groupe I" commensurable a un groupe engendré par des réflexions (cf. [Vin]).
A indice fini prés on peut supposer que I' est normalisé par une réflexion 7.
Cette réflexion 7 agit alors sur la variété H"/T" et I’ensemble de ses points
fixes forme une sous-variété totalement géodésique de codimension 1.

COROLLAIRE 2. Les variétés hyperboliques construites par Vinberg dans
[Vin] ou par Gromov et Piateski-Shapiro dans [GPS] ont un premier nombre
de Betti virtuel infini.
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4. Variétés hyperboliques de dimension 3. En dimension trois, les
variétés qui vérifient les hypotheses du théoreme d’hyperbolisation de Thurston
ou qui sont obtenues par le théoréme de chirurgie de Dehn hyperbolique [Th]
fournissent une myriade d’exemples de variétés hyperboliques pour lesquelles
la conjecture de Thurston demeure ouverte. Dans [Lul], Lubotzky pose la
question de savoir si les 3-variétés hyperboliques non compactes de volume fini
(dont on sait qu’elles vérifient la conjecture de Thurston, cf. [He]) admettent
un revétement fini dont le groupe fondamental se surjecte sur un groupe libre
de rang deux. Signalons.que, dans [CLR], Cooper, Long et Reid répondent
par I’affirmative a ce probleme.

5. Variétés arithmétiques « non standard ». En dimension impaire il existe
des variétés arithmétiques non standard (toutes compactes). On en esquisse la
construction a la section 5. Les théorémes précédents ne s’appliquent pas a
celles-ci en raison de I’absence de cycles géodésiques de codimension 1. La

conjecture de Thurston est néanmoins vérifiée pour la plupart de ces variétés
(cf. [Li], [RV], [LM] et [Lu2]).

4. VARIETES HYPERBOLIQUES ISOSPECTRALES

Soit My une variété hyperbolique compacte de dimension n. On suppose
que M, contient un cycle géodésique de dimension n — 1. Le lemme suivant
découle du théoreme 2.

LEMME 4. Il existe un revétement fini M de My tel que

1) M contient deux sous-variétés plongées totalement géodésiques disjointes
F{ et Fp;

2) M contient deux lacets fermés disjoints vy, et 7, ;
3) pour i=1,2, vy; rencontre F; en un et un seul point;
4) les ensembles vy N F, et v, N F; sont vides;

5) il existe une isométrie @ de M qui permute F, et F,.

Démonstration. D’apres le théoréme 2, quitte a remplacer M, par un
revétement fini que nous noterons toujours My, on peut supposer qu’il existe
deux sous-variétés totalement géodésiques orientées F et V dans M, dont
Punion est non séparante. Le nombre d’intersection homologique entre un
lacet fermé de M, et la sous-variété V induit un morphisme surjectif p;
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du groupe fondamental m,(My) de My dans Z. Soit n; un entier non nul.
Soit M le revétement fini (cyclique) galoisien de M, associé au sous-groupe
pl_l(an) de m(Myp) : le groupe de Galois de ce revétement est isomorphe
a Z/mZ. Soit v un lacet fermé dans M, intersectant I’ensemble F UV en
un unique point qui appartient a F. Le lacet y et la variét€é F se relevent
au revétement M. Soit F; un relevé arbitraire de F. On suppose n; pair.
Soit ¢ I'isométrie de M induite par la transformation de revétement associée
a I’élément % du groupe Z/nZ. Soit F, = @(F;). La sous-variété F, est
un relevé de F et I'isométrie ¢ permute F; et F,. De plus il existe une
constante co indépendante de n; telle que d(Fi,F>) > con;. Donc, pour m
suffisamment grand, il existe deux relevés v;, v, de v dans M tels que les
ensembles v, N F, et v, N F; soient vides. Ce qui acheve la démonstration
du lemme 4. [

DEFINITION. Soit v une géodésique fermée dans une variété hyperbolique.
On dira que v est d-réductible si y est librement homotope a un produit de
Jacets pointés tous librement homotopes a des géodésiques de longueur plus
petite que d.

Remarquons des maintenant que cette propriété est invariante par isomeétries.

Soit M la variété obtenue dans le lemme 4. Soit W la variété compacte
a bord obtenue en découpant M le long de F; et de F,. Soit d un réel
supérieur ou égal a la longueur de ~y; et de vy, tel que toutes les gé€odésiques
de W soient d-réductibles (un tel d existe car la variét€ W est compacte).
Soit 6 le diamétre de la variéte W.

LEMME 5. Il existe L > 0 (que l’on peut choisir arbitrairement grand)
et un revétement fini M de M tels que

1) M contient deux sous-variétés disjointes totalement géodésiques F, et F,
dont ['union est non séparante;

2) les géodésiques de l’ensemble C; = {géodésiques fermées rencontrant
F; avec un nombre d’intersection homologique non nul et de longueur
minimale} (i = 1,2) rencontrent I’ensemble F 1 U Fy en un et un seul
point qui, de plus, appartient a F;;

3) ['ensemble C des géodésiques fermées de longueur L qui ne sont pas
d-réductibles est égal a la réunion disjointe de C; et de C;;

4) deux géodésiques quelconques dans C sont a distance plus petite que 0.
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Démonstration. Le corollaire qui suit le théoréme 2 montre que les sous-
variétés F, et F, de M permettent de construire une application continue f
de M sur un bouquet de deux cercles. Soit xy € M un point n’appartenant
pas a Fy UF,. Lapplication f induit un morphisme surjectif p, du groupe
fondamental (M, xp) sur le groupe libre de rang deux (a,b), ou chaque
générateur correspond a une boucle du bouquet de cercles. Soit n, un entier
positif non nul. Soit G le sous-groupe

— — - = -1 12 12 n—1_3—ny+1
<a”2,aba La*ba™?, ... a™ a1 b bab~! bPabT?,. .. b lab )

du groupe (a,b). Soit M le revétement fini de M associé au sous-groupe
123 1(G) de m(M,xp); c’est un revétement de degré 2n, — 1 qui n’est pas
galoisien. Le revétement du bouquet de cercles associé au sous-groupe G est
un graphe G décrit dans la figure 2 (lorsque n; = 5).

FIGURE 2

Le graphe G

On peut construire le revétement M de la maniére suivante. On découpe
M le long des sous-variétés F; et F,. On obtient ainsi la variété a bord w
avec

OW =F UF] UFf UF; .

On construit M en remplagant chaque sommet s du graphe G ci-dessus avec
pour arétes sortantes ej, e] , e, e, par une copie de W et en recollant
les Fi* avec les F; se trouvant sur une méme aréte. Soit xo le point de
M au-dessus de Xo qui appartient a la copie de W identifiée au sommet
So du graphe G. L’application f se reléve en une application f continue de

M dans le graphe G qui induit un morphisme surjectif ps: m(M,%) — G.
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L’isométrie ¢ (donnée par le point 5) du lemme 4) envoie le point xo de
M sur un point n’appartenant pas a la réunion de F; et de F, et permute
F1 et F,; elle induit donc un isomorphisme de 7;(M,xp) qui laisse stable le
sous-groupe p, Y(G). L’isométrie ¢ se reléve donc en une isométrie & de M.

La préimage de F; (resp. F,) est la réunion disjointe de 2n, — 1 copies
isométriques de F; (resp. F,). La préimage de ~; (resp. ;) a n, composantes
connexes: ny — 1 d’entre elles sont isométriques & v; (resp. 7.) et l'autre
est un revétement de degré n, de ; (resp. 72) que I’on note 7; (resp. ¥2).
Le lacet +; (resp. 7,) rencontre n, relevés de F; (resp Fz) Fl 1s-- F"’
(resp. F},.. F”’) on en choisit un que 1’on note F 1 (resp F2) de maniere
a ce que fl et F2 soient permutées par @ et d(Fl,Fz) > c1hy ou ¢y est
une constante indépendante de n;,.

Pour i = 1,2 soit C; I’ensemble des géodésiques fermées de M rencontrant
F; avec un nombre d’intersection homologique non nul et de longueur minimale
que I’on note [;. Puisque ¢ est une isométrie de M qui permute les F;, on
a [; = [, ; on note cette valeur commune L.

FArT 1. Tout élément de C; est une réunion de segments géodésiques
joignant les F! pour j=1,... ny. En particulier, L > cyn, oi c, est une
constante indépendante de n;.

En effet, soit v € C;. Soit g € (M, xy) un représentant de . Puisque -y
rencontre F. ; avec un nombre d’intersection homologique non nul, la somme
des puissances de a™ (resp. b™) si i = 1 (resp. si i = 2) dans ’écriture
réduite de p3(g) € G (sur les générateurs donnés dans la définition de G) est
non nulle. Alors, 7y rencontre tous les Fl pour j = 1,...,n, avec un degré
d’intersection homologique non nul, et le fait 1 en découle.

FAIT 2. Pour ny suffisamment grand, tout élément de Cy (resp. C,) est
disjoint de F, (resp. F1).

En effet, soit v un élément de C; (resp. C;) qui rencontre F2 (resp. F 1)
Le lacet « contient un sous chemin géodésique disjoint de F; (resp. F»)

partant d’un point de f (so) et y revenant apreés avoir rencontré F » (resp.

s ) R ~1
Fy1). Un tel chemin est de longueur > Sny. Or le diametre de f  (so) est
égal a 6. Donc, si ny > 22 on peut tronquer -y et obtenir un lacet de longueur

plus petit que L et rencontrant F (resp. F,) avec un nombre d’intersection
homologique non nul; ce qui est absurde par définition de L.
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FAIT 3. Pour ny suffisamment grand, tout élément de C; pour i = 1,2,

~

rencontre F; en un unique point.

En effet, soit v un élément de C; qui rencontre deux fois F;. Soit §;
le diametre de F;. St ny > 5—7 on peut tronquer -~y et obtenir un lacet de

longueur plus petite que L et rencontrant F; avec un nombre d’intersection
homologique non nul; ce qui est absurde par définition de L.

Dans la suite on suppose que 7 est choisi suffisamment grand de maniere
a ce que les conclusions des faits 2 et 3 soient vérifiées et L > 2d. Les deux
premiers points du lemme 5 sont donc démontrés.

FAIT 4. Tout lacet ~y représenté dans 7r1(1\~4 ,Xo) par un élément du noyau
de p3 est d-réductible.

En effet un tel lacet v est homotope a un lacet de W ; le fait 4 résulte
donc de la définition de d.

Montrons le point 3). Montrons d’abord que C C C; UCy. Les np — 1
préimages isométriques (de longueur < d) de ; (resp. 7y2) sont représentées
par des éléments de m;(M,X;) dont les images par ps; sont les b/ab™/ (resp.
a/ba) pour j = 1,...,ny — 1. Donc d’apres le fait 4, I’ensemble des
géodésiques d-réductibles est représenté dans (M, %) par le sous-groupe
p3; '(H) ob H est un sous-groupe normal de G contenant les b/ab™ et les
a’ba™ pour j=1,...n,—1. Soit v un élément de C. Soit g € G I'image par
p3 d’un représentant de y dans (M, %0). Alors, g ¢ H et, dans I’écriture
réduite de g sur les générateurs de G, la somme des puissances des a™ ou des

"2 est non nulle. Donc -y intersecte F 1 ou F » avec un nombre d’intersection
homologique non nul. Comme v est de longueur L, elle appartient a C; UC,.

Montrons maintenant que C; UC, C C i.e. que les éléments de C; UC,
ne sont pas d-réductibles. Soit v € C; U C,. Supposons que <y soit une
géodésique d-réductible. Alors « s’écrit comme un produit libre de lacets
librement homotopes a des gé€odésiques de longueur plus petite que d. Mais
~ intersecte F; ou F, en un unique point, donc une des géodésiques de
longueur d intersecte Fy ou F, avec un degré d’intersection homologique
non nul, ce qui est impossible par minimalité de L. Le point 3) du lemme 5
est donc démontré.

Enfin le point 4) se déduit simplement du fait que tout élément de C passe

~—1
par un point de I’ensemble f (so) qui est de diametre §. [
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THEOREME 3. Soit My une variété hyperbolique compacte. On suppose
que My contient un cycle géodésique de codimension un. Alors My admet
deux revétements finis isospectraux mais non isométriques.

Démonstration. Pour construire ces deux revétements isospectraux on va
utiliser la méthode de Sunada (pour un survol introductif de 1’isospectralité
et en particulier de la méthode de Sunada cf. [Brl]). D’apres les lemmes 4
et 5, il existe un revétement fini M de M, comme dans le lemme 5 (dans la
suite on adopte les notations du lemme 5 et on suppose choisi L > 26).

On considere les graphes

g1=X/H1 et gZI/Y/Hg
ou & est le graphe de Cayley de SL(3,2) pour les générateurs
0 1 1 1 00
A=10 1 0 et B={(10 0 1],
1 00 0O 1 1
1 x =
H,; est le sous-groupe de SL.(3,2) constitué des matrices (O * *) , et Hy
0 x =«

1 00
le sous-groupe de SL(3,2) constitué des matrices <* * *) .

* kX%

— -

s - - - ——

FIGURE 3
Le graphe G,

On commence par construire un revétement régulier de M: M de groupe de
Galois isomorphe a SL(3,2). La variété M contient deux sous-variétés F ; et
F, auxquelles on sait associer un morphisme surjectif du groupe fondamental
de M sur le groupe libre de rang deux qui se surjecte sur SL(3,2). Soit
donc > P4 la surjection de 7r1(M) sur SL(3,2). On note M le revétement fini
de M associé au sous- groupe p, 1({6}) de 7r1(M) Le revétement M peut
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FIGURE 4

Le graphe G

aussi s’obtenir de la méme maniére que dans la démonstration du lemme 5 en

recollant la variété M — (Fy UF,) suivant le graphe X. La variété M ainsi
obtenue admet une action de SL(3,2) par lsometnes de la méme maniere
que SL(3,2) agit sur X. Maintenant, soient M, =M /Hy et M, =M /H;.
Puisque l'action de SL(3,2) sur M est compatible avec son action sur X,
les variétés M, et M, peuvent aussi étre obtenues en recollant des copies de

— (F ; U F2) suivant les graphes G; et G,. On applique alors le théoreme
suivant.

THEOREME (Sunada [Sun]). Soit G un groupe fini qui agit librement sur
une variété riemannienne compacte M par isométries. Soient Hy, Hy < G
deux sous-groupes Vérifiant

[} N Hy| = |[g] N Hz|

pour tout g € G (on [g] désigne la classe de conjugaison de g dans G).
Alors les deux quotients My = M/Hy et M, = M /H, sont isospectraux.

Il est classique (cf. [Brl]) que les groupes H;, H, < G = SL(3,2)
vérifient la condition du théoreme de Sunada. On en déduit que les variétés
hyperboliques M, et M, construites ci-dessus sont isospectrales.

Pour conclure il nous reste a2 montrer que les variétés ]\711 et Mz ne
sont pas isométriques. Pour ce faire on compte le nombre maximal d; de
géodésiques simples de longueurs L qui ne sont pas d-réductibles et qui sont
deux a deux a distance < 2L+ 26 dans M;.

Chaque élément v de C admet 3 relevés dans chaque M; pour [ = 1,2
dont un seul lui est isométrique; on le note ;. De plus dans M; il existe Y1
et 7] des relevés de «,v' € C & distance > 3L > 2L + 26 et dans M, pour

/

tous v,y € C, 7, et v, sont a distance < 2L + 25. Nous allons montrer
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que les géodésiques ; pour v € C sont les seules géodésiques fermées de
longueur L qui ne sont pas d-réductibles dans M; (i = 1,2). En particulier
on aura montré que d; # d, et donc que M; et M, ne sont pas isométriques.

Soit A une géodésique simple fermée de longueur L dans M;. Si la
projection de A dans M rencontre un F i avec un nombre d’intersection
homologique non nul alors elle appartient a C et la projection de revétement
restreinte 2 A est une isométrie. En particulier A = ~; pour un certain
v € C. Si la projection de A dans M rencontre chaque F; avec un nombre
d’intersection homologique nul, alors d’apres le lemme 5 elle est d-réductible
et il en est de méme pour A. [

De la section précédente on tire immédiatement le corollaire suivant.

COROLLAIRE 3. Pour tout n, il existe des variétés hyperboliques isospec-
trales non isométriques de dimension n (non nécessairement arithmétiques).

La littérature sur I'isospectralité est vaste (cf. [Brl]), signalons que les
premiers exemples de variétés hyperboliques isospectrales ont été obtenus
par M.-F. Vignéras [Vig] en dimension deux et trois a 1’aide de variétés
arithmétiques. Depuis, la méthode de Sunada a permis de construire de
nombreux exemples en dimension deux. En grande dimension (n > 26),
R. Spatzier a montré [Sp], toujours a l’aide de la méthode de Sunada et
a l’aide du théoréme de rigidité de Mostow, que toute variété hyperbolique
compacte est finiment revétue par deux variétés hyperboliques isospectrales non
isométriques. Enfin en dimension trois, A. Reid [Re] a construit des exemples
non arithmétiques de variétés hyperboliques isospectrales non isométriques.

5. PETITES VALEURS PROPRES DE CERTAINES VARIETES HYPERBOLIQUES

Dans cette section, on s’intéresse au probléme de I’existence de petites
valeurs propres. '

On dira qu’une suite {M,} de variétés hyperboliques converge uni-
formément sur tout compact vers une variété hyperbolique M si pour tout
compact K de M, pour m grand, il existe un compact K,, C M,, isométrique
a K. Signalons que cette définition est plus forte que la notion habituelle de
convergence géométrique (cf. [CEG]). On appelle enfin variété tube de type
(n,k) le quotient H"/A de I’espace hyperbolique H" par un réseau A de
Stab (H*) agissant librement sur H¥.
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THEOREME 4. Soit M une variété hyperbolique de dimension n. Supposons
que M contient un cycle géodésique de dimension k. Alors, pour tout réel €
strictement positif. M est finiment revétue par une variété hyperbolique dont
la premiére valeur propre du laplacien est inférieure a

k—1)(n—k)+e
n—1 2+8
(5

1. Construction des revétements finis. On écrit M = H"/T" avec I" groupe
kleinien. Puis, de méme que dans la démonstration du théoréme 1, quitte a
conjuguer I', on suppose que A = Stab (H*)NT est un réseau dans Stab (HF)
agissant librement sur H*. Soit {I',,} la suite de sous-groupes de " distingués
d’indices finis, fournie par le lemme principal. On a A = (1, I',. La suite de
variétés hyperboliques {M,, = H"/T",,} converge alors uniformément sur tout
compact vers la variété tube T = H"/A. En effet, soit K un compact de T .
Soit K un compact de H” se projetant surjectivement sur K. L’action de I
sur H" est propre donc {y € I' | YK N K # @} est fini. Or, A = (T s
donc, pour m grand, si v € I', est tel que YKNK +# @, alors v € A. Et la
projection de revétement de T sur M, se restreint a K en une isométrie.

si2k>n+1eta

sinon.

Démonstration.

2. Etude du laplacien hyperboligue (cf. [Sull] pour plus de détails). Soit
Ao(T) la borne inférieure du spectre L? du laplacien sur 7. Dans [Sull],
Sullivan montre que Ao(T) = (k— 1) (n—K) si 2k > n+1 et A(T) = (251)°
sinon.

Esquissons I’idée de la démonstration (de 1’inégalité dont on a besoin). Etant
donné ¢ un point de S"~', on peut considérer la projection stéréographique
du modele de la boule pour H" vers le modele du demi-espace pour H* avec
§ <> 00. Si y est la coordonnée verticale, alors ®(x, o, &) = (y(x))* est une
fonction a(n — 1 — «)-propre du laplacien sur H". (Dans ces coordonnées,
A = V?*(Apuciigien) — (1 — 2)y;%.) La construction de Patterson-Sullivan (cf.
[Sul2]) implique I’existence pour o = dimL(A) = k—1 (car A est un réseau
de Stab (H*)) d’une application continue A-équivariante

uw: H* — M+(SZO_1)

X
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d/-‘LX q)(xa Cl, g)
telle que —=(¢) =
T 9= 56,06

L(A) = S’;l(c S"-1) de A. La fonction u(x) = fsn-ld)(x,a,é)duo(g) (ou
0 € H” est tel que y(0) = 1) pour x € H" est une fonction a(n—1— c)-propre
du laplacien sur H”. Et

[ e,
u(x) = /S B g ) = /S

. De plus, p est concentrée sur 1I’ensemble limite

L Ap(©) = (ST
L’ application u est donc A-invariante et de carré intégrable sur F = H*/A. On
parametre T par F x S"~®*D x [0, +oo[. La métrique sur F x S"~*+D x [R}
est multipliée par coshR sur F et par sinhR sur S"~%+D_ Donc I’élément
de volume est multiplié par un facteur de ’ordre de ¢”"~VR. La valeur de u,
quant a elle, est multipliée par un facteur de ’ordre de e=>R. Ainsi, I’intégrale
sur T — F est une intégrale double

/ / w’dogdR = O( / e(2etn—DR ( / u2d0> dR),
R=0 0

ou do est I’élément de volume sur F x S*~¢+D et dog 1’élément de volume
sur FxS"~*+Dx {R}. L’intégrale est finie si 2o > n—1. Donc, si 2k > n+1,
Mo(T) < (k—1) (n—k). Enfin, il est connu que dans tous les cas A\g(T) < (”;1)2
(cf. Appendice pour plus de détails).

3. Conclusion. Soit € un réel strictement positif. Compte tenu de la
caractérisation de Rayleigh (cf. [Ch]), il existe une fonction f de classe C*°
sur T a support compact K telle que

S laf|)?
Je 1

Mais la suite (M,,) de variétés hyperboliques converge uniformément sur tout
compact vers la variét€ tube 7. Donc, il existe un entier mq tel que la variété
M,,, contienne un compact K’ isométrique a K. On en déduit 1’existence
d’une fonction f’ sur M, de classe C*° a support inclus dans K’ telle que

dar'|I”
Joa,, N D) e

Juay, IF'1

L’intégrale de f’ sur My n’a pas de raison d’étre nulle, mais on peut introduire

S S
g =1 vol (M) /Tf'

< Ao(T) + €.

la fonction
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2
Lorsque my est grand meo | ¢'|* est proche de meo F)* et

/ g =0.
M

mo
La caractérisation de la premiére valeur propre du laplacien par les quotients
de Rayleigh (cf. [Ch]) permet alors de conclure la preuve du théoreme 4. [

L’idée de faire converger des revétements finis de M vers une variété tube
est empruntée a Iarticle [BLS] ou elle est appliquée a I’étude du dual unitaire
des Q-groupes semi-simples.

Lorsque 2k > n+ 1, le théoréme 4 nous dit bien (comme annoncé dans
I’introduction) que M a virtuellement des petites valeurs propres.

En Appendice, on détermine explicitement le spectre des vari€tés tubes.

Lorsque k =n—1, d’apres le théoreme 2, on sait que M a virtuellement
un premier nombre de Betti positif donc grace a la formule de Trace de
Selberg [R] ou plus simplement en utilisant les quotients de Rayleigh, on peut
montrer que M admet des revétements avec des valeurs propres aussi petites
que 1’on veut.

Variétés arithmétiques «non standard ». En dimension impaire, on a vu
qu’il existe des variétés hyperboliques arithmétiques non standard. On en
esquisse la construction (cf. [Vin] et [LM] pour plus de détails).

Soient K un corps de nombres totalement réel, D une algebre de
quaternions sur K muni de I’involution o donnée par

o(x) = tr(x) — x, x€eD.
Soit V un espace vectoriel de dimension m sur D et
h: VXV —D

une forme anti-hermitienne non dégénérée (de telle maniére que pour M\,
peDetv, weV, (A, pw) = a(MNh(v,w)u). Soit G = SU(h) le groupe
spécial unitaire de la forme %. Supposons que h soit choisi de maniére 2 ce
que

G(K ®g R) = SO(n, 1) x C,

ou C est un groupe compact et n+ 1 = 2m. Si O est ’anneau des entiers
de K, alors la projection T de G(O) sur SO(n, 1) est un réseau arithmétique.
Tout sous-groupe de I' d’indice fini agissant librement sur H” donne lieu 2
une variété hyperbolique; en dimension n # 3, 7 ce sont les seules variétés
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hyperboliques arithmétiques non standard. Concluons en montrant que le
théoréme 4 s’applique a ces variétés. Soit W un sous-espace vectoriel de
V de dimension m — 1 et hy la restriction de la forme 2 a W. Choisissons
W de maniere a ce que si H = SU(hy), alors

H(K @ R)=SO(n—-2,1) x C,

ou C est un groupe compact. La projection A de H(O) sur SO(n—2,1) est
un réseau. Soit I'; un sous-groupe de I" d’indice fini agissant librement sur
H”. Notons A; =I'1NA; A; agit librement sur H*? et on a une immersion
canonique de H""?/A; dans H"/T’;. Donc le théoréme 4 s’applique et, pour
n > 6, H'/I'; a virtuellement des petites valeurs propres. Compte tenu de
notre inventaire (cf. section 3) des variétés hyperboliques connues, on en
déduit :

FAIT. Toutes les variétés hyperboliques de dimension n > 6, n # 7 de
la liste du §3 ont virtuellement des petites valeurs propres.

Enfin, remarquons que d’aprés un théoreme de R. Brooks [Br2], toute
variété riemannienne dont le groupe fondamental se surjecte sur un groupe
libre de rang deux admet une tour infinie de revétements finis dont la premiere
valeur propre est uniformément minorée. En particulier, le théoréme 2 assure
que toute variété hyperbolique compacte qui contient un cycle géodésique de
codimension 1 admet une tour de revétements finis dont la premiere valeur
propre est uniformément minorée.

APPENDICE: SPECTRE DES VARIETES TUBES

Soient n, k deux entiers positifs, n > k. On rappelle qu'une variété tube
de type (n,k) est le quotient H"/A de I’espace hyperbolique de dimension n
par un réseau A de Stab (HF) agissant librement sur H* C H". Dans la suite
on se fixe un tel groupe A, on note F = H*/A que ’on suppose compacte
et on note (ds)®> sa métrique. Dans cet appendice, on étudie le spectre du
laplacien de la variété tube T = H"/A. La métrique sur T est donnée par
(ct. [Ch])

(dx)? = (cosh r)(ds)? + (dr)* + (sinh r)*(do)?,

ol x=(s,r,0) avec s € F, r €]0,+oo[, o € 8"~ %D On écrit
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k
(dx)? = (coshr)? Y _ gij(s1, - ., se)dsids; + (dr)”
ij=1
n—G+1)
+ (sinh r)2 Z hij(é’l, R 9n_(k+1))d9,-d9j .
ij=1
On note (g¥) (resp. (h¥)) I'inverse de la matrice (gy) (resp. (hy)) et |g|
(resp. |h|) le module de son déterminant. Alors le laplacien de T s’€crit
.

A. = ! [Z ai (Z(coshr) Zg”\/— ) gr(\/ﬁg—r)

n—k+1) 5 n—(k+1)
+ 3 Z (sinh 7)™ Zhlf\/_ )],

i=1

oit D = (cosh r)*|g|(sinh r)?*~® +D)|h| Donc, si ¢ est une fonction de classe
C? sur T, le laplacien de ¢ est donné par:

1 0%
Ap = ———App — —=
1 (cosh r)? F Or?

5@ 1
or (smh r)?

— (ktanhr + (n — (k + 1)) cothr) Agr—t+1p .
Il existe un opérateur auto-adjoint canonique (que 1’on note aussi A) sur L*(T)
qui étend le laplacien sur les fonctions C*° a support compact. Puisque T
est complet, toutes les extensions auto-adjointes coincident et A est unique
[Ga]. On appelle fonction de type fini (A, 1) une fonction ¢ sur T définie par
p(x) = f(r)g(s)h(o) avec x = (r,s,0), f fonction C*° sur ]0,+oo[ a support
compact, g fonction C*° A-propre sur F et h fonction C*° p-propre sur
S*—*+D Ta restriction de A aux fonctions de type fini (A, u) s’exprime 2
I’aide d’un opérateur différentiel du second ordre sur ]O, +oo[. On suit [DS]
pour obtenir explicitement le spectre de cet opérateur. On en déduira-le spectre
o(A) de A en utilisant la densité des fonctions de type fini et le théoréme
spectral. Soit A(r) = (cosh r)*(sinh r)*~&+1D

1. Etude des fonctions de type fini. Soient \ et 1 deux valeurs propres
des opérateurs Ar et Ag—w+n. On note Ey et F, leurs espaces propres
associés. Soient f une fonction de classe C* sur ]0,+oo[, g €Ex, h€ F "
et ¢ la fonction sur T définie par ¢(x) = f(rg(s)h(o), avec x = (r,s,0).
On a

Ap(x) = (L, f) (Ng(Hh(o),
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1 of A 7
Dt = A { ( "o )} [(coshr)2 + (sinh r)? f-

De méme que pour le laplacien, il existe un unique opérateur auto-adjoint
(que I’on note aussi Oy ,) sur L*(0,00;A(r)dr) qui étend I'opérateur Oy ,
sur les fonctions C*° a support compact. Il est connu (cf. [DS]) que le spectre
o(Ux,u) de Uy, est réunion disjointe du spectre discret

04(0x,,) = {v | Ox — vI n’est pas injective}
et du spectre continu
o@x ) ={v| @O, — vI)™! existe mais n’est pas continue} .

Soit o,.(0y ) le spectre essentiel de U , i.e. I’ensemble des points non-isolés
de o(0y,,). L'ensemble o(0) ,) — o.(0y ,) est un ensemble fini d’éléments
de o4(U),,). Pour r proche de infini, I’équation

(1) Onuf — (2 —sHf =0 (avec p="

et s€C)

devient
d> 2
(d2+<n—1>——<p —s)>f 0.

Les solutions de cette équation sont asymptotes a const-e*" . Donc, d’apres
[DS; XII1.7.40], o.(0y ,) = [p?, +00). Etudions maintenant le bas du spectre.
On cherche une solution explicite 4 1’équation (1). I’ opérateur étant elliptique,
on cherche (cf. [Ru]) f dans L%(0, 00;A(r)dr) N C*°. On sait (cf. [Ch]) que
I’on peut écrire p=1In—(k+2)+10) avec I N et A =#tk—1—1) avec
te[0,k—1]U ("—”2‘—1 4+ iR4). On cherche alors une solution a 1’équation (1)
sous la forme

(sinh r)!
(coshr)!

) = () T

avec ¢ C°°. On a

- ———[—(A(r)f (M)] =

A(r) 0
(sinhr)! . , ,
— [cp (r)+ ¢'(r) ((n —(k+1)+2)cothr — (2t — k) tanh r)
(coshr)!
In—k+2)+1) mm—(k-—1))
— +(U-tn—-14+1-10))].
+ go(r)( sinh® r cosh® r ( ) ))} :
. l 1
L’équation (1) s’écrit donc (apres simplification par (stmh7) . |
(coshr)! y
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2 "+ O ((n—(k+1)+2)cothr
+ (k20 tanh ) + o(N((p)* —s%) =0

ol p/ = p+1—t. Or I'équation (2) posséde une solution réguliere en 0 qui
s’exprime 2 ’aide de la fonction hypergéométrique (cf. [Er]):

0s(r) = (cosh )~ Fy(A(p+1—1—5), L(p—k+I+1+1—5); 55 + [ taoh® r) .
Donc une solution réguliere en 0 de 1’équation (1) est donnée par
(1) = (tanh »)!(cosh )P o Fy (L (p41—t—5), L (p—k+l+1+1—5); 255 +1; tanh® r) .
Et ([Er, p. 104]), pour Re(s) > 0,

fi(r) = e(9)e" =P (1 4 o(1))
quand r — 400, avec

F((n— k) + D)
Th+p+l—AE+p—k+l+t+1)

c(s) =2°7°

Les valeurs propres de ’opérateur [l , (dans L*(0, 00; A(r)dr)) inférieures
a p? sont donc les nombres p? —s* ol s est un zéro positif de c(s). On
obtient donc o(dx ) = {p* —s* | s > 0 et c(s) = 0} U [p?, +00).

2. Conclusion. Lespace L*(0,00;A(r)dr) ® (BAE)) ® (@, F,) est dense
dans L*(T) et l'opérateur A sur L?*(T) induit sur chaque sous-espace
L*(0,00;A(r)dr) ® Ex ® F,, Uopérateur O, , ® Id ® Id. Donc, d’apres le
théoreme spectral, on obtient:

THEOREME 5. Soit A un réseau cocompact de Stab (H¥) agissant libre-
ment sur H* C H". Soit F = H*/A et T = H'/A. Le spectre L? de la
variété tube T est la réunion du spectre essentiel o,(A) = [p?,+00) et des
petites valeurs propres p* —s* on p = % et s=t—1—p—2p €]0, p] avec
p,lL €N et t(k—1—1) dans le spectre de F.

En particulier, si k—1 > p (i.e. 2k > n+ 1), en prenant ¢t = k — 1,

p =1=0 on obtient que p* —(k—1—p)* = (k—1)(n—k) est dans le spectre
L?> de T.
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