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PREMIER NOMBRE DE BETTI ET SPECTRE DU LAPLACIEN

DE CERTAINES VARIÉTÉS HYPERBOLIQUES

par Nicolas BERGERON

Abstract. The notion of an /-geodesic cycle in a hyperbolic manifold generalises,

in dimension I, that of a closed geodesic. In this note we study some topological
properties of such cycles. Then we show that the existence of geodesic cycles of
codimension 1 allows one to prove that there exist isospectral non isometric hyperbolic
manifolds of every dimension. Finally, we give a simple criterion using geodesic cycles
that ensures the existence of small eigenvalues of the Laplace operator in a finite cover
of a hyperbolic manifold.

Introduction

Soit M une variété riemannienne.

DÉFINITIONS. On appelle cycle géodésique de dimension l dans M la

donnée d'une immersion i: F —> M d'une variété compacte F de dimension

l dans M telle que pour tout a dans F, il existe un voisinage ouvert U de

x dans F tel que i(U) soit une sous-variété totalement géodésique de M.
On dira qu'un tel cycle se relève à un revêtement M de M s'il existe un
revêtement fini F de F auquel i se relève en une application i : F M.

Dans cet article on étudie l'influence de l'existence de tels cycles dans les

variétés hyperboliques (i.e. les variétés riemanniennes de courbure constante
égale à —1), tant sur le plan topologique que géométrique. Notre premier
théorème est une propriété topologique de ces cycles (une généralisation en
dimension quelconque de résultats de Scott [Se] et de Long [Lo]).
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THÉORÈME 1. Tout cycle géodésique dans une variété hyperbolique dont
le groupe fondamental est de type fini se relève à un revêtement fini en un

cycle dont V image est une sous-variété plongée totalement géodésique.

On connaît peu de choses sur la topologie des variétés hyperboliques. Il
est donc naturel de s'intéresser dans un premier temps à leur homologie.
Fixons-nous une variété hyperbolique M de volume fini de dimension n. Une

conjecture attribuée, dans [Bol], à Thurston affirme que M a un revêtement fini
N avec un premier nombre de Betti non nul, b\(N) > 0. Récemment, Lubotzky
[Lui] a montré, en utilisant la théorie de Bass-Serre d'actions de groupes sur
les arbres, que si M contient une sous-variété (plongée) totalement géodésique
de codimension 1, M vérifie la conjecture de Thurston. Lubotzky montre plus

précisément que M admet un revêtement fini dont le groupe fondamental se

surjecte sur un groupe libre de rang 2. On peut en fait montrer le théorème

suivant.

THÉORÈME 2. Tout cycle géodésique de codimension 1 dans une variété

hyperbolique de volume fini admet deux relevés disjoints à un revêtement fini
dont les images sont deux sous-variétés plongées totalement géodésiques dont

l'union est non séparante.

Lorsque la variété ambiante est non compacte, on peut étendre le théorème 2

à des cycles généralisés de volume fini. En particulier on obtient une généralisation

du théorème de Lubotzky, et les corollaires suivants (on dit d'une variété

qu'elle a un premier nombre de Betti virtuel infini si pour tout entier N > 0,
elle admet un revêtement fini avec un premier nombre de Betti supérieur à N).

COROLLAIRE 1. Les variétés hyperboliques arithmétiques construites par
Borel dans [Bo2] ont un premier nombre de Betti virtuel infini.

COROLLAIRE 2. Les variétés hyperboliques non arithmétiques construites

par Vinberg dans [Vin] ou par Gromov et Piateski-Shapiro dans [GPS] ont

un premier nombre de Betti virtuel infini.

L'existence de cycles géodésiques dans M a aussi des conséquences pour
le spectre de M et de ses revêtements.

Notre troisième théorème est le suivant :
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THÉORÈME 3. Soit M une variété hyperbolique compacte de dimension n.

Si M contient un cycle géodésique de dimension n—l, alors M admet deux

revêtements finis M\ et M2 isospectraux mais non isométriques.

COROLLAIRE 3. Pour tout n, il existe des variétés hyperboliques isospectrales

non isométriques de dimension n (non nécessairement arithmétiques).

Les premiers exemples de variétés hyperboliques isospectrales non
isométriques ont été construits par M.-F. Vignéras [Vig] en dimensions 2 et 3;
ce sont des variétés arithmétiques. R. Spatzier dans [Sp] a montré que pour
n > 26 toute variété hyperbolique vérifie les conclusions du théorème 3.

Enfin récemment A. Reid [Re] a construit des exemples non arithmétiques en

dimension 3.

Dans [R], Randol pose le problème de l'existence de variétés hyperboliques
compactes avec de petites valeurs propres, i.e. des valeurs propres du laplacien
inférieures à (^)2 • L'existence de telles valeurs propres influe notamment sur
le comportement asymptotique du nombre Nr(x,y) (pour T proche de l'infini)
de points de l'espace hyperbolique Hn appartenant à la boule hyperbolique
centrée en x de rayon T et se projetant dans M sur le même point que y.
Randol montre par exemple que, pour n — 3, la variance de Nr(x,y) est,

gd + cOT

pour T proche de l'infini, de l'ordre de — (à une constante près et
a(l + or)

pour un certain a a(M) E]0,1[) si M a de petites valeurs propres et est

un 0(TeT) sinon. Dans [R], Randol montre qu'une variété hyperbolique qui a

un premier nombre de Betti non nul admet un revêtement fini avec de petites
valeurs propres (en fait arbitrairement petites). On peut démontrer un critère
simple d'existence de petites valeurs propres dans un revêtement fini.

THÉORÈME 4. Si M contient un cycle géodésique de dimension k >
alors M admet un revêtement fini avec de petites valeurs propres.

Ce critère simple permet notamment de montrer que toutes les variétés
hyperboliques compactes connues de dimension n > 6 (n^l) admettent des
revêtements finis avec de petites valeurs propres, sans faire appel aux difficiles
avancées vers la conjecture de Thurston.

Organisation de l'article. La première section est consacrée à la démonstration

d'un lemme «à la Selberg» qui généralise le fait que tout sous-groupe
de GL„(R) de type fini est résiduellement fini. Dans une deuxième section,
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on applique ce lemme à la démonstration des théorèmes 1 et 2. Dans une
troisième section on traite le cas des variétés non compactes de volume fini
et on rappelle les diverses constructions connues de variétés hyperboliques de

volume fini en constatant que ces théorèmes s'appliquent à un certain nombre
d'entre elles. Dans la quatrième section on montre le théorème 3 à l'aide du

théorème 2 et de la méthode de Sunada [Sun]. Dans la cinquième et dernière

section, étant donné une variété hyperbolique M de volume fini on construit,
à l'aide du lemme de la première section, une suite de revêtements finis de M
qui converge sur tout compact vers une variété que l'on appelle variété tube.

A l'aide de travaux de Sullivan [Sull], on peut majorer la première valeur

propre du laplacien de cette variété tube, d'où l'on déduit le théorème 4. On

conclut cet article par un appendice consacré au calcul explicite du spectre
des variétés tubes Hn/A où A est un réseau cocompact de Stab (H*) (k <
Calcul élémentaire qui permet notamment d'éviter le recours aux travaux de

Sullivan dans la démonstration du théorème 4.

Remerciements. Le théorème 3 répond à une question de R. Brooks, qui
a bien voulu s'intéresser aux premières versions de cet article; je l'en remercie.

La démonstration du théorème 4 doit beaucoup à l'article [BLS], qui m'a été

expliqué par M. Burger; je l'en remercie. Merci à Damien Gaboriau pour sa

relecture attentive. Une erreur m'a été aimablement signalée et corrigée par le

referee, je l'en remercie. Enfin, je suis particulièrement redevable à J.-R Otal

pour ses nombreux conseils et encouragements.

1. TOPOLOGIE DES SOUS-GROUPES D'INDICE FINI

ET GROUPES ALGÉBRIQUES

On appelle topologie des sous-groupes d'indice fini d'un groupe T (cf.

[S]), la topologie sur F pour laquelle les sous-groupes d'indice fini de F
forment une base de voisinages de l'élément neutre e. On peut restreindre

la base de voisinages de g aux sous-groupes distingués d'indices finis de F

(quitte à prendre l'intersection des conjugués). Notons H* l'adhérence d'un

sous-groupe H de F pour cette topologie, on a:

h*pi hn.
n<ir

[ruvK+oo

Enfin, on dit d'un groupe de type fini F qu'il est résiduellement fini si

l'élément neutre de F est fermé pour la topologie des sous-groupes d'indices

finis de F.
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LEMME 1. Soient a\,... ,an des éléments non nuls d'un sous-anneau

A de C finiment engendré sur Z. Alors, il existe un corps fini F et un

morphisme rj: A —> F tels que pour tout i, piaé) 0.

Démonstration. Le théorème de normalisation de Noether (cf. [AM; p.70])
affirme qu'il existe s G Z, s ^ 0 et xi,... ,X£ dans A qui sont algébriquement

indépendants sur Z[ j] tels que A est entier sur B Z[j][xi,... ,x*]. Soit

a ai • • • an. Soit p un entier premier qui ne divise pas 5. On a un morphisme

Z[j] —* Fp que l'on peut clairement étendre à B en envoyant les xz- sur des

éléments quelconques. Puis, quitte à prendre un p plus grand, on peut supposer

que les coefficients du polynôme annulateur de a sur B sont tous envoyés sur
des éléments non nuls de Fp. Ce polynôme s'envoie alors sur un polynôme
sur qui a une racine non triviale dans une certaine extension de Fp. Ainsi,
on peut étendre le morphisme B —» Fp en un morphisme B[a] —> Fp(a')
de manière à ce que l'image de a soit un élément non nul. Comme A est
finiment engendré, de même manière, on peut obtenir 77 : A —» F où F est

une extension finie de Fp.

On a alors (cf. aussi [MS]) :

LEMME PRINCIPAL. Soient H un sous-groupe algébrique de GL#(R) et
T un sous-groupe de GL^(R) de type fini. Notons A H D T. Alors A est
fermé dans F pour la topologie des sous-groupes d'indices finis de F, i.e.

A* A.

Démonstration. Il suffit de montrer que A* C H. Soit x G F ; nous allons
montrer que si x ^ H, alors x fi A*.

Puisque H est Zariski-fermé dans GL^(R) et x G GL^(R), il existe un
polynôme P sur la variété algébrique GLN(C) identiquement nul sur H et
tel que P(x) soit non nul. Le groupe F étant de type fini, il existe un sous-
anneau A de C finiment engendré sur Z tel que F soit un sous-groupe de
GLjv(A) et que P soit à coefficients dans A. Le lemme 1 implique l'existence
d'un morphisme fi: GLjv(A) —> GL^(F) tel que P{fi(x)) # 0 (où P est
le polynôme à coefficients dans F obtenu en appliquant 77 aux coefficients
de P). En se restreignant à T, on obtient donc un morphisme ^ de T dans
GLn(F) qui est un groupe fini. De plus, P(é{A)) 0 (car A c H). Donc,
ip(x) n'appartient pas à ^(A). Soit alors L ker^. Le sous-groupe L est
distingué et d'indice fini dans T, et x ^ AL (car ^(AL) ib{A)). Comme
A* C AL, x n'appartient pas à A*.
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Appliqué à H — {e}, le lemme principal redonne le fait (dû à Mal'cev
[Ma]) que tout sous-groupe de GL#(R) de type fini est résiduellement fini.

2. Sur la topologie des cycles géodésiques

Nous allons appliquer le lemme principal aux cycles géodésiques dans des

variétés hyperboliques.

DÉFINITIONS. Variétés hyperboliques (cf. [Th], [CEG] ou [Rat]). Soit
H" Y espace hyperbolique, i.e. l'unique variété riemannienne de dimension

n simplement connexe, complète et de courbure constante égale à — 1.

Une variété hyperbolique (de dimension n) M est une variété riemannienne

complète de courbure constante égale à — 1. Une telle variété est isométrique
au quotient Hn/r de l'espace hyperbolique par un groupe kleinien, Le. un

sous-groupe discret sans torsion de Isom(Hn). Par commodité, toutes les

variétés hyperboliques que nous considérerons seront supposées orientées.

Alors, M Hn/r où F est un groupe kleinien contenu dans Isom+(Hn), le

sous-groupe des isométries préservant l'orientation de Hn. Rappelons que le

groupe Isom+(EF) s'identifie via le modèle de l'hyperboloïde au sous-groupe
PSO(n, 1) de O(zz, 1) (d'indice 4) constitué des matrices de déterminant 1

préservant la nappe supérieure de l'hyperboloïde. Étant donné un groupe
kleinien, on notera L(r) Y ensemble limite de T, i.e. la fermeture, dans la

sphère à l'infini S^"1, de l'ensemble des points d'accumulation d'une orbite

quelconque de T dans Hn.

THÉORÈME 1. Tout cycle géodésique dans une variété hyperbolique dont
le groupe fondamental est de type fini se relève à un revêtement fini en un

cycle dont l'image est une sous-variété plongée totalement géodésique.

REMARQUE. Le théorème 1 était déjà connu en dimension deux [Se] et

en dimension trois [Lo].

Démonstration. Soit M — H"/F une variété hyperbolique avec T un

groupe kleinien de type fini. Soit z'o: Fq —» M un cycle géodésique de

dimension /. Soit z0 •' Fq Hn un relevé de z0 au revêtement universel Fq

de Fq (que l'on suppose connexe). Puisque z'o est une immersion localement

totalement géodésique, il en est de même pour z'o- L'application z'o est propre
donc z'o(Fo) est complet dans H". Donc z0(Fo) coïncide avec un sous-espace
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totalement géodésique de dimension l dans Hn. L'application z'o est al°rs un

revêtement d'image simplement connexe donc un homéomorphisme sur son

image. Et, quitte à conjuguer, on peut identifier le revêtement universel de

Fq avec le sous-espace Hz de H". De plus, i0 est injective au niveau des

groupes fondamentaux; on note Ao — io#(7TiFo). On a alors

A0 C rnstabcrf),

où Stab(Hz), le stabilisateur de H1 dans Isom+(Hn), est égal à un sous-groupe
d'indice fini du produit du groupe 0(7,1) par un groupe de rotations compact

que l'on note C. Soit A m Stab(Hz). Montrons que la variété F Hz/A
(qui est finiment revêtue par Fq) se plonge dans un revêtement fini de la

variété M Hn/T. Soit i l'immersion canonique de F dans M. Soit D un

domaine fondamental (compact) pour l'action de A sur Hz. L'action de T
sur H" est propre. Donc l'ensemble

E {7 C F I 7D HD / 0}
est fini. En particulier E — A est un sous-ensemble fini de T. Mais, d'après
le lemme principal (appliqué à H — 0(1,1) x C et T T),

A* A,

pour la topologie des sous-groupes d'indice fini de T. Donc, il existe un sous-

groupe T d'indice fini dans T qui contient A et tel que EOT — EDA. Alors,
M H"/r est un revêtement fini de M et contient F comme sous-variété

plongée totalement géodésique. Or le plongement canonique i de F dans M
relève i. Donc le cycle donné par i0 se relève à M en un cycle dont l'image
égale à i(F) est plongée.

Remarque. En remplaçant Stab(Hz) par Isom+(Hz) x C dans la
démonstration du théorème 1, on peut montrer que sous les hypothèses du
théorème 1 on peut relever le cycle en un cycle dont l'image est une sous-
variété orientée.

THÉORÈME 2. Tout cycle géodésique de codimension 1 dans une variété
hyperbolique de volume fini admet deux relevés disjoints à un revêtement fini
dont les images sont des sous-variétés plongées totalement géodésiques dont
l'union est non séparante.

Démonstration. Soit M une variété hyperbolique de volume fini de
dimension n qui contient un cycle géodésique de dimension n - 1. Le
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groupe fondamental de M est de type fini. D'après le théorème 1, on peut
donc supposer que M contient une sous-variété orientée plongée totalement

géodésique F W~l/A (i.e. que le cycle est d'image plongée dans M).
Montrons que quitte à passer à un revêtement fini de M, on peut supposer

que F est non séparante (i.e. que le cycle se relève en un cycle non homologue
à zéro). Supposons que F sépare M en M+ et M_. Le théorème de Van

Kampen implique que le groupe fondamental F de M se décompose en un

produit amalgamé

T A *A B,

où A (resp. B) est le groupe fondamental de M+ (resp. Af_). Soient a E A
et b G B deux éléments de F dont aucune puissance n'appartienne à A.
Comme dans la démonstration du théorème 1, le lemme principal implique
que le sous-groupe A est fermé pour la topologie des sous-groupes d'indice
fini de T. Soit K un sous-groupe de F d'indice fini tel que K contienne A
mais ne contienne ni a ni b. Soit T l'intersection de tous les conjugués de

K dans T. Alors, M W1 /F est un revêtement fini de M auquel la variété

F se relève en une sous-variété non séparante.

Figure 1

Fi est non séparante

En effet, soient a, ß deux lacets dans M représentant respectivement

a et b et basés en un point xo G F. On construit par récurrence une

famille finie de relevés de a et ß : {ci — ot\^ c2 — ß2> ..Cf 5/} (ou

{d ai, c% /%, ci ßi}) et / relevés disjoints de F : Fu ,Fj
(l G N) de manière à ce que c/ joigne Ft à Fi+\ pour i <1 et q joigne Fi
à Fio pour un certain 1 < io < l (le revêtement est fini). Puisque ni a ni ß
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ne se relève, z'o < l et le lacet cl0. c/ a un degré d'intersection congru
à 1 modulo 2 avec F/. Dans la suite on suppose que F est non séparante

dans M.
Concluons la démonstration du théorème 2. On a un morphisme canonique

p de T sur Z dont le noyau contient A, le groupe fondamental de F :

0 —> (A C)ker(p) —> T —> Z —> 0. Le noyau ker (p) de p est distingué
dans T, donc son ensemble limite L(ker(p)) coïncide avec celui de F:
S^"1 L(T). Mais puisque A C Stab (H*-1) l'ensemble limite L(A) de A
est inclus dans S^2, donc ker(p) contient un élément a de F dont aucune

puissance n'appartient à A. Soit b G T tel que p(b) 1 ; dans la suite

on suppose que b peut être représenté par un lacet rencontrant F en un

unique point. On applique le lemme principal pour obtenir l'existence d'un

sous-groupe Ê de T d'indice fini ne contenant pas a. La variété M Hn/r
est un revêtement fini de M. Et la variété F admet deux relevés disjoints
dans M dont l'union est non séparante. En effet, soient a un lacet dans M
représentant a et ß un lacet dans M représentant b et rencontrant F en un
unique point. Soit c\ un relevé de a allant d'un relevé F\ de F à un relevé

disjoint F2 de F. On construit par récurrence des relevés C2, q de ß
et des relevés disjoints F3, F/ de F (le N) de manière à ce que ct
soit un chemin allant de Fz à FI+1 pour ici et c/ un chemin de F/ à Fio

avec 1 < % < /. Le lacet cio.cia+1.. .q a un nombre d'intersection égal à 1

modulo 2 avec F/ et à 0 modulo 2 avec Fi. Donc F\ U Fi est non séparante
dans M.

COROLLAIRE. Soit M une variété hyperbolique de volume fini contenant
un cycle géodésique de codimension 1. Alors le groupe fondamental de M
contient un sous-groupe d'indice fini qui se surjecte sur un groupe libre de

rang deux.

Démonstration. Conservons les notations de la démonstration précédente.
Alors, T 7TiM se surjecte sur un groupe libre de rang deux. En effet, soient
Ci Fi X [-1,1] et Q ^ Fi x [-1,1] deux voisinages colliers de Fi et F/
dans M. On construit une application continue de M sur un bouquet de deux
cercles en projetant tous les points de M - (Ci U C/) sur le point base du
bouquet et chaque intervalle xx [-1,1] sur la première boucle lorsque x e F\
et sur la deuxième lorsque x e F/. Aujniveau des groupes fondamentaux, cette
application induit une surjection de T sur le groupe libre de rang deux. En
particulier sous les hypotheses du théorème 2, M admet un revêtement fini
dont le groupe fondamental se surjecte sur un groupe libre de rang deux.
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3. Extension au cas des cycles généralisés

Soit M une variété hyperbolique de volume fini de dimension n. Les

théorèmes 1 et 2 de la section précédente admettent des généralisations dans

le cas de cycles non compacts.

DÉFINITIONS. On appelle cycle géodésique généralisé de dimension l
dans M la donnée d'une immersion propre i: F —» M d'une variété F de

dimension l dans M telle que pour tout x dans F, il existe un voisinage
ouvert U de x dans F tel que i(U) soit une sous-variété totalement géodésique
de M. On dira qu'un tel cycle se relève à un revêtement M de M s'il existe

un revêtement fini F de F auquel i se relève en une application i : F —> M.

Lorsque la variété M est compacte, les cycles géodésiques généralisés

sont des cycles géodésiques. Dans la suite on suppose donc que M n'est

pas compacte. Le lemme de Margulis ([Th], [CEG], [Rat]) implique que
M est réunion d'une sous-variété compacte à bord Mo et d'un nombre

fini de composantes de la forme V x [0,+oo[ où V est une variété plate

compacte de dimension n — 1. Soit i : F M un cycle géodésique généralisé
de dimension L De la même manière qu'au début de la démonstration du

théorème 1, on peut supposer que

FH'/A avec A T n Stab (H')

et que i est l'immersion canonique.

LEMME 3. La variété hyperbolique F est réunion d'une sous-variété

compacte à bord Fq et d'un nombre fini de composantes de la forme
W x [0, -foo[ où W est une variété plate compacte de dimension l — 1.

En particulier, si l > 2, F est de volume fini. De plus, étant donnée une

composante connexe W x [0, +oo[ de F—Fo, il existe une composante connexe

V x [0, +oo[ de M — Mo telle que la restriction de i à W x [0, +oo[ soit de

la forme i(w,r) — (j(w),r) où j: W —>• V est un cycle géodésique.

Démonstration. Notons F0 — i~l(M0). La sous-variété F0 est compacte à

bord dans F. Chaque composante du bord de Fq s'envoie dans une composante
du bord de Mo. Or i est propre donc Fo n'a qu'un nombre fini de composantes
de bord. Passons maintenant au revêtement universel Hn. On identifie toujours
H* avec le revêtement universel de F. Soit D un domaine de Dirichlet pour
l'action de A sur H1. Soit D0 l'ensemble des points de D au-dessus de Fq.
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Soit D\ une composante connexe de D — Do. L'image de D\ dans M est

incluse dans une composante connexe de M — Mo que nous noterons C. Le

fait que C soit de la forme V x [0, +00) implique que

(i) dans les coordonnées du demi-espace, on peut supposer que D\
A x [ay +00) où A est inclus dans un domaine fondamental pour l'action
de Too (le stabilisateur du point à l'infini) par isométries sur l'horosphère

y — a (munie de sa structure euclidienne induite) ;

(ii) l'action de F sur l'horoboule En_1 x [a, +00) respecte la structure

produit ; et

(iii) A C El~l x {fl}(C E*-1 x {a}).

Alors, Aoo Foo nlsom(E/_1). Donc D\ est au-dessus d'une composante
de la forme W x [0,+00) où W Ez-1/Aoo. Et l'immersion totalement

géodésique canonique j: W —» V E^/Too convient.

THÉORÈME F. Tout cycle géodésique généralisé dans une variété
hyperbolique de volume fini se relève à un revêtement fini en un cycle dont l'image
est une sous-variété plongée totalement géodésique.

Démonstration. On conserve les notations du début de cette section.
Passons au revêtement universel H72. On identifie toujours H1 avec le revêtement
universel de F. Soit D un domaine de Dirichlet pour l'action de A sur H1.

Soit Do l'ensemble des points de D au-dessus de Fq Le groupe T agit proprement

sur Hn et D0 est compact donc {7 G F | 7D0 DDo ^0} est fini. Or le
lemme 3 implique que {7 G T | 7D H D / 0} {7 G T | 7D0 n D0 ^ 0}.
On conclut alors de la même manière que dans la preuve du théorème 1.

Enfin la preuve du théorème 2 implique le théorème suivant.

THÉORÈME 2'. Tout cycle géodésique généralisé de codimension 1 dans
une variété hyperbolique de volume fini admet deux relevés disjoints à un
revêtement fini dont les images sont des sous-variétés plongées totalement
géodésiques dont l'union est non séparante.

Comme à la section précédente, on peut remarquer que les conclusions du
théorème 2' impliquent que le revêtement fini a un groupe fondamental qui
se surjecte sur un groupe libre de rang deux.

Rappelons brièvement les constructions connues de variétés hyperboliques
de volume fini (cf. [Vin]).
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1. Variétés arithmétiques «standard» construites par Borel dans [Bo2].
Soit K un corps de nombres totalement réel de degré m sur Q, O son

anneau des entiers et cru... ,am les plongements de K dans R. Soit
f(xi,*2» • •. a\x\ + • • + anxl — an+\xl+1 une forme quadratique
diagonale avec at G K. On suppose que aif a pour signature (n, 1) et que Gif
est définie positive pour i 2,3,... ,ra. Le sous-groupe T{f) de GLn+\(ö)
préservant / s'identifie alors à un réseau de 0(n, 1) (cf. [Bo2]). Si T C T(f)
est un sous-groupe d'indice fini sans torsion inclus dans PSO(n, 1), alors il
agit librement sur H" et l'espace quotient W/T est une variété arithmétique
standard (de volume fini). Pour un tel groupe T soit Fo C T le sous-groupe
stabilisant le plan x\ 0. L'image de To dans PSO(/î, 1) donne alors un
cycle géodésique Hn-1/^o —* Hn/T peut-être généralisé.

COROLLAIRE 1. Les variétés hyperboliques arithmétiques construites par
Borel dans [Bo2] ont un premier de Betti virtuel infini.

On a appelé premier nombre de Betti virtuel d'une variété M la borne

supérieur de l'ensemble des premiers nombres de Betti des revêtements finis
de M. Le corollaire 1 se déduit du théorème 2' en remarquant que le groupe
libre de rang 2 (a,ß) a un sous-groupe d'indice fini libre de rang > N pour
tout V e N.

2. Variétés hybrides. Dans [GPS], Gromov et Piateski-Shapiro présentent

une nouvelle construction de variétés hyperboliques en découpant et en recollant

des variétés arithmétiques standard suivant des sous-variétés (plongées)
totalement géodésiques de codimension un. Par construction ces variétés

contiennent une sous-variété totalement géodésique de codimension 1.

3. Groupes engendrés par des réflexions. Pour n > 4, tous les exemples

connus de variétés hyperboliques (de volume fini) non arithmétiques sont soit
des variétés hybrides soit des variétés obtenues comme quotient de H" par un

groupe T commensurable à un groupe engendré par des réflexions (cf. [Vin]).
À indice fini près on peut supposer que T est normalisé par une réflexion r.
Cette réflexion r agit alors sur la variété Hn/T et l'ensemble de ses points
fixes forme une sous-variété totalement géodésique de codimension 1.

COROLLAIRE 2. Les variétés hyperboliques construites par Vinberg dans

[Vin] ou par Gromov et Piateski-Shapiro dans [GPS] ont un premier nombre

de Betti virtuel infini.
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4. Variétés hyperboliques de dimension 3. En dimension trois, les

variétés qui vérifient les hypothèses du théorème d'hyperbolisation de Thurston

ou qui sont obtenues par le théorème de chirurgie de Dehn hyperbolique [Th]

fournissent une myriade d'exemples de variétés hyperboliques pour lesquelles

la conjecture de Thurston demeure ouverte. Dans [Lui], Lubotzky pose la

question de savoir si les 3-variétés hyperboliques non compactes de volume fini

(dont on sait qu'elles vérifient la conjecture de Thurston, cf. [He]) admettent

un revêtement fini dont le groupe fondamental se surjecte sur un groupe libre
de rang deux. Signalons que, dans [CLR], Cooper, Long et Reid répondent

par l'affirmative à ce problème.

5. Variétés arithmétiques « non standard ». En dimension impaire il existe

des variétés arithmétiques non standard (toutes compactes). On en esquisse la

construction à la section 5. Les théorèmes précédents ne s'appliquent pas à

celles-ci en raison de l'absence de cycles géodésiques de codimension 1. La
conjecture de Thurston est néanmoins vérifiée pour la plupart de ces variétés

(cf. [Li], [RV], [LM] et [Lu2]).

4. Variétés hyperboliques isospectrales

Soit Mo une variété hyperbolique compacte de dimension n. On suppose
que Mo contient un cycle géodésique de dimension n — 1. Le lemme suivant
découle du théorème 2.

LEMME 4. Il existe un revêtement fini M de Mo tel que

1) M contient deux sous-variétés plongées totalement géodésiques disjointes
Fi et F2 ;

2) M contient deux lacets fermés disjoints 71 et y2 >'

3) pour i ~ 1,2, 7i rencontre Ft en un et un seul point;
4) les ensembles 71 H F2 et y2 H F\ sont vides;

5) il existe une isométrie ip de M qui permute F\ et F2.

Démonstration. D'après le théorème 2, quitte à remplacer M0 par un
revêtement fini que nous noterons toujours M0, on peut supposer qu'il existe
deux sous-variétés totalement géodésiques orientées F et V dans M0 dont
l'union est non séparante. Le nombre d'intersection homologique entre un
lacet fermé de M0 et la sous-variété V induit un morphisme surjectif px
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du groupe fondamental it\ (M0) de Mo dans Z. Soit n\ un entier non nul.

Soit M le revêtement fini (cyclique) galoisien de Mo associé au sous-groupe
pfl{n{L) de 7ir(Mo) : le groupe de Galois de ce revêtement est isomorphe
à 7j/n{L. Soit 7 un lacet fermé dans Mo intersectant l'ensemble F U V en

un unique point qui appartient à F. Le lacet 7 et la variété F se relèvent

au revêtement M. Soit F\ un relevé arbitraire de F. On suppose n\ pair.
Soit 99 l'isométrie de M induite par la transformation de revêtement associée

à l'élément ^ du groupe Z/niZ. Soit F2 — <p(F\). La sous-variété F2 est

un relevé de F et l'isométrie tp permute F\ et F2. De plus il existe une

constante co indépendante de n\ telle que d{F\, F2) > co^i. Donc, pour n\
suffisamment grand, il existe deux relevés 71, 72 de 7 dans M tels que les

ensembles 71 n F2 et 72 D F\ soient vides. Ce qui achève la démonstration
du lemme 4.

DÉFINITION. Soit 7 une géodésique fermée dans une variété hyperbolique.
On dira que 7 est d-réductible si 7 est librement homotope à un produit de

lacets pointés tous librement homotopes à des géodésiques de longueur plus

petite que d.

Remarquons dès maintenant que cette propriété est invariante par isométries.

Soit M la variété obtenue dans le lemme 4. Soit W la variété compacte
à bord obtenue en découpant M le long de F\ et de F2. Soit d un réel

supérieur ou égal à la longueur de 71 et de 72 tel que toutes les géodésiques

de W soient d-réductibles (un tel d existe car la variété W est compacte).
Soit ô le diamètre de la variété W.

LEMME 5. Il existe L > 0 (que l'on peut choisir arbitrairement grand)
et un revêtement fini M de M tels que

1) M contient deux sous-variétés disjointes totalement géodésiques F\ et F2

dont l'union est non séparante;

2) les géodésiques de l'ensemble Ci {géodésiques fermées rencontrant

Fi avec un nombre d'intersection homologique non nul et de longueur

minimale} (i 1,2) rencontrent l'ensemble F\ U F2 en un et un seul

point qui, de plus, appartient à Fi ;

3) l'ensemble C des géodésiques fermées de longueur L qui ne sont pas
d-réductibles est égal à la réunion disjointe de C\ et de C2 ;

4) deux géodésiques quelconques dans C sont à distance plus petite que 6.
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Démonstration. Le corollaire qui suit le théorème 2 montre que les sous-

variétés F\ et F2 de M permettent de construire une application continue /
de M sur un bouquet de deux cercles. Soit xq G M un point n'appartenant

pas à Fi UF2. L'application / induit un morphisme surjectif p2 du groupe
fondamental it\(M,xq) sur le groupe libre de rang deux (a,b), où chaque

générateur correspond à une boucle du bouquet de cercles. Soit n2 un entier

positif non nul. Soit G le sous-groupe

(ani,aba~l ,a2ba~2,... :an2~lba~ni+1 ,bn2 ,bab~l ,b2ab~2,..., bn2~lab~~122+1

du groupe (a,b). Soit M le revêtement fini de M associé au sous-groupe
P2l(G) de 7Ti(M,x0) ; c'est un revêtement de degré 2n2 — 1 qui n'est pas
galoisien. Le revêtement du bouquet de cercles associé au sous-groupe G est

un graphe Q décrit dans la figure 2 (lorsque n2 5).

Figure 2

Le graphe Q

On peut construire le revêtement M de la manière suivante. On découpe
M le long des sous-variétés F{ et F2 On obtient ainsi la variété à bord
avec

dw F+U Ff UF+UF2-.
On construit M en remplaçant chaque sommet s du graphe G ci-dessus avec
pour arêtes sortantes é\,e~, e+, par une copie de et en recollant
les F+ avec les F~ se trouvant sur une même arête. Soit x0 le point de
M au-dessus de x0 qui appartient à la copie de identifiée au sommet
s2 du graphe Q. L'application / se relève en une application / continue de
M dans le graphe Q qui induit un morphisme surjectif p3 : ni (M, —> G
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L'isométrie p (donnée par le point 5) du lemme 4) envoie le point xq de

M sur un point n'appartenant pas à la réunion de F\ et de F2 et permute
Fi et F2 ; elle induit donc un isomorphisme de 7Ti(M,xo) fi11* laisse stable le

sous-groupe p^iG). L'isométrie p se relève donc en une isométrie ^ de M.
La préimage de F\ (resp. F2) est la réunion disjointe de 2n2 — 1 copies

isométriques de F\ (resp. F2). La préimage de 71 (resp. 72) a n2 composantes
connexes: n2 — 1 d'entre elles sont isométriques à 71 (resp. 72) et l'autre
est un revêtement de degré n2 de 71 (resp. 72) que l'on note 71 (resp. 72).
Le lacet 71 (resp. 72) rencontre n2 relevés de Fi (resp. F2): F*,..., F"2

(resp. F\,... FÎJ2); on en choisit un que l'on note Fi (resp. F2) de manière
à ce que F\ et F2 soient permutées par p et d(Fi,F2) > c\n2 où c\ est

une constante indépendante de n2.

Pour i 1,2 soit Cz l'ensemble des géodésiques fermées de M rencontrant

Fi avec un nombre d'intersection homologique non nul et de longueur minimale

que l'on note lt. Puisque p est une isométrie de M qui permute les F;, on
a li l2 ; on note cette valeur commune L.

FAIT 1. Tout élément de Ci est une réunion de segments géodésiques

joignant les F{ pour j — 1,..., n2. En particulier, L > c2n2 où c2 est une

constante indépendante de n2.

En effet, soit 7 £ Ci. Soit g G 7Ti(M,Îo) un représentant de 7. Puisque 7
rencontre Fz avec un nombre d'intersection homologique non nul, la somme
des puissances de an2 (resp. bnz) si i — 1 (resp. si i 2) dans l'écriture
réduite de p2{g) G G (sur les générateurs donnés dans la définition de G) est

non nulle. Alors, 7 rencontre tous les F{ pour j — 1,... ,n2 avec un degré

d'intersection homologique non nul, et le fait 1 en découle.

FAIT 2. Pour n2 suffisamment grand, tout élément de C\ {resp. C2) est

disjoint de F2 (resp. F1

En effet, soit 7 un élément de C\ (resp. C2) qui rencontre F2 (resp. F\).
Le lacet 7 contient un sous-chemin géodésique disjoint de F1 (resp. F2)

partant d'un point de / (^o) et y revenant après avoir rencontré F2 (resp.

Fi). Un tel chemin est de longueur > ^n2. Or le diamètre de / (so) est

égal à 6. Donc, si n2 > ^, on peut tronquer 7 et obtenir un lacet de longueur

plus petit que L et rencontrant Fi (resp. F2) avec un nombre d'intersection

homologique non nul; ce qui est absurde par définition de L.
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FAIT 3. Pour n2 suffisamment grand, tout élément de Ci pour i — 1,2,

rencontre Fi en un unique point.

En effet, soit 7 un élément de Ct qui rencontre deux fois Ft. Soit <5/

le diamètre de F*. Si n2 > on peut tronquer 7 et obtenir un lacet de

longueur plus petite que L et rencontrant Fi avec un nombre d intersection

homologique non nul; ce qui est absurde par définition de L.

Dans la suite on suppose que n2 est choisi suffisamment grand de manière

à ce que les conclusions des faits 2 et 3 soient vérifiées et L > 2d. Les deux

premiers points du lemme 5 sont donc démontrés.

FAIT 4. Tout lacet 7 représenté dans 7Ti(M,Xo) Par un élément du noyau
de ps est d-réductible.

En effet un tel lacet 7 est homotope à un lacet de W ; le fait 4 résulte

donc de la définition de d.

Montrons le point 3). Montrons d'abord que C C C\ U C2. Les n2 — 1

préimages isométriques (de longueur < d) de 71 (resp. 72) sont représentées

par des éléments de 7ri(M,x0) dont les images par p3 sont les Vab~j (resp.

ajba~j) pour j l,...,w2 — 1. Donc d'après le fait 4, l'ensemble des

géodésiques d-réductibles est représenté dans ir\(M,x0) par le sous-groupe

p2l(H) où H est un sous-groupe normal de G contenant les tiab~J et les

aJba~J pour j 1,... n2 — 1. Soit 7 un élément de C. Soit g G G l'image par

P3 d'un représentant de 7 dans 7Ti(M,xo). Alors, g £ H et, dans l'écriture
réduite de g sur les générateurs de G, la somme des puissances des am- ou des

bni est non nulle. Donc 7 intersecte F1 ou F2 avec un nombre d'intersection

homologique non nul. Comme 7 est de longueur L, elle appartient à C\ UC2.

Montrons maintenant que Ci U C2 C C i.e. que les éléments de C\ U C2

ne sont pas d-réductibles. Soit 7 G C\ U C2. Supposons que 7 soit une

géodésique d-réductible. Alors 7 s'écrit comme un produit libre de lacets

librement homotopes à des géodésiques de longueur plus petite que d. Mais

7 intersecte F\ ou F2 en un unique point, donc une des géodésiques de

longueur d intersecte F1 ou F2 avec un degré d'intersection homologique
non nul, ce qui est impossible par minimalité de L. Le point 3) du lemme 5

est donc démontré.

Enfin le point 4) se déduit simplement du fait que tout élément de C passe

par un point de l'ensemble / (s0) qui est de diamètre 6.



126 N BERGERON

THÉORÈME 3. Soit Mo une variété hyperbolique compacte. On suppose

que Mo contient un cycle géodésique de codimension un. Alors Mo admet
deux revêtements finis isospectraux mais non isométriques.

Démonstration. Pour construire ces deux revêtements isospectraux on va
utiliser la méthode de Sunada (pour un survol introductif de l'isospectralité
et en particulier de la méthode de Sunada cf. [Brl]). D'après les lemmes 4

et 5, il existe un revêtement fini M de M0 comme dans le lemme 5 (dans la

suite on adopte les notations du lemme 5 et on suppose choisi L > 26).
On considère les graphes

Qx « X/Hx et g2 X/H2

où est le graphe de Cayley de SL(3,2) pour les générateurs

/0 1 1\ (\ 0 0\
A 0 1 0 } et £= 0 0 1,

\1 0 0/ \0 1 1 /
1 *

H\ est le sous-groupe de SL(3,2) constitué des matrices 0 *
Vo *

(l 0 0\
le sous-groupe de SL(3,2) constitué des matrices * * * I

V * * * /

Figure 3

Le graphe G\

On commence par construire un revêtement régulier de M : M de groupe de

Galois isomorphe à SL(3,2). La variété M contient deux sous-variétés F\ et

F2 auxquelles on sait associer un morphisme surjectif du groupe fondamental

de M sur le groupe libre de rang deux qui se surjecte sur SL(3,2). Soit
donc p4 la surjection de 7Ti(M) sur SL(3,2). On note M le revêtement fini
de M associé au sous-groupe pj1^}) de 7^(M). Le revêtement M peut



PREMIER NOMBRE DE BETTI ET SPECTRE DU LAPLACIEN 127

Figure 4

Le graphe G2

aussi s'obtenir de la même manière que dans la démonstration du lemme 5 en

recollant la variété M -(7U F2)suivant le graphe La variété M ainsi

obtenue admet une action de SL(3,2) par isométries de la même manière

que SL(3,2) agit sur X. Maintenant, soient M/H\ et M2 M/H2.
Puisque l'action de SL(3,2) sur M est compatible avec son action sur X,
les variétés M\ et M2peuventaussi être obtenues en recollant des copies de

M - (Fi U F2) suivant les graphes Gi et Gi • On applique alors le théorème

suivant.

Théorème (Sunada [Sun]). Soit G un groupe fini qui agit librement sur

une variété riemannienne compacte M par isométries. Soient H\, H2 < G

deux sous-groupes vérifiant

\[g}^Hl\ \[g]nH2\

pour tout g G G (où [g] désigne la classe de conjugaison de g dans G).
Alors les deux quotients M\ — M/H\ et M2 — M/H2 sont isospectraux.

Il est classique (cf. [Brl]) que les groupes H2 < G SL(3,2)
vérifient la condition du théorème de Sunada. On en déduit que les variétés

hyperboliques M\ et M2 construites ci-dessus sont isospectrales.

Pour conclure il nous reste à montrer que les variétés M\ et M2 ne

sont pas isométriques. Pour ce faire on compte le nombre maximal di de

géodésiques simples de longueurs L qui ne sont pas d-réductibles et qui sont
deux à deux à distance <2L +26 dans Mt.

Chaque élément 7 de C admet 3 relevés dans chaque M/ pour i 1,2
dont un seul lui est isométrique; on le note 7De plus dans M\ il existe 71

et j[ des relevés de 7,7' G C à distance > 3L > 2L + 26 et dans M2 pour
tous 7,7' GC, 72 et 72 sont à distance < 2L + 26. Nous allons montrer
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que les géodésiques 7% pour 7 G C sont les seules géodésiques fermées de

longueur L qui ne sont pas d-réductibles dans Mt (i 1,2). En particulier
on aura montré que d\ ^ di et donc que M\ et M2 ne sont pas isométriques.

Soit À une géodésique simple fermée de longueur L dans M*. Si la

projection de À dans M rencontre un Fi avec un nombre d'intersection
homologique non nul alors elle appartient à C et la projection de revêtement
restreinte à À est une isométrie. En particulier À 7 pour un certain

7 G C. Si la projection de À dans M rencontre chaque F/ avec un nombre
d'intersection homologique nul, alors d'après le lemme 5 elle est d-réductible
et il en est de même pour À.

De la section précédente on tire immédiatement le corollaire suivant.

COROLLAIRE 3. Pour tout n, il existe des variétés hyperboliques isospectrales

non isométriques de dimension n (non nécessairement arithmétiques).

La littérature sur l'isospectralité est vaste (cf. [Brl]), signalons que les

premiers exemples de variétés hyperboliques isospectrales ont été obtenus

par M.-F. Vignéras [Vig] en dimension deux et trois à l'aide de variétés

arithmétiques. Depuis, la méthode de Sunada a permis de construire de

nombreux exemples en dimension deux. En grande dimension (n > 26),
R. Spatzier a montré [Sp], toujours à l'aide de la méthode de Sunada et
à l'aide du théorème de rigidité de Mostow, que toute variété hyperbolique

compacte est finiment revêtue par deux variétés hyperboliques isospectrales non

isométriques. Enfin en dimension trois, A. Reid [Re] a construit des exemples

non arithmétiques de variétés hyperboliques isospectrales non isométriques.

5. Petites valeurs propres de certaines variétés hyperboliques

Dans cette section, on s'intéresse au problème de l'existence de petites
valeurs propres.

On dira qu'une suite {Mm} de variétés hyperboliques converge
uniformément sur tout compact vers une variété hyperbolique M si pour tout

compact de M, pour m grand, il existe un compact Km C Mm isométrique
à K. Signalons que cette définition est plus forte que la notion habituelle de

convergence géométrique (cf. [CEG]). On appelle enfin variété tube de type

(n^k) le quotient Hn/A de l'espace hyperbolique H" par un réseau A de

Stab(H^) agissant librement sur H^.
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THÉORÈME 4. Soit M une variété hyperbolique de dimension n. Supposons

que M contient un cycle géodésique de dimension k. Alors, pour tout réel s

strictement positif, M est finiment revêtue par une variété hyperbolique dont

la première valeur propre du laplacien est inférieure à

(k — 1) (n — k) + £

si 2k > n + 1 et à

sinon.

Démonstration.
1. Construction des revêtements finis. On écrit M — H" /Y avec F groupe

kleinien. Puis, de même que dans la démonstration du théorème 1, quitte à

conjuguer F, on suppose que A Stab(H^)HT est un réseau dans Stab (H*)
agissant librement sur Hk. Soit {Fm} la suite de sous-groupes de F distingués
d'indices finis, fournie par le lemme principal. On a A fjm La suite de

variétés hyperboliques {Mm Hn/rm} converge alors uniformément sur tout

compact vers la variété tube T H"/A. En effet, soit K un compact de T.
Soit K un compact de H" se projetant surjectivement sur K. L'action de F
sur H" est propre donc {7 G F | 7K n K 7^ 0} est fini. Or, A ">

donc, pour m grand, si 7 G Fm est tel que 7K D K 7^ 0, alors 7 G A. Et la

projection de revêtement de T sur Mm se restreint à K en une isométrie.

2. Étude du laplacien hyperbolique (cf. [Sull] pour plus de détails). Soit
A0(L) la borne inférieure du spectre L2 du laplacien sur T. Dans [Sull],
Sullivan montre que À0(7) (k — 1) (n — k) si 2k > 1 et Ao(T) (^)2
sinon.

Esquissons l'idée de la démonstration (de l'inégalité dont on a besoin). Étant
donné £ un point de S"-1, on peut considérer la projection stéréographique
du modèle de la boule pour Hn vers le modèle du demi-espace pour W1 avec
£ 00. Si y est la coordonnée verticale, alors 0(jt,a,£) Cy(x))a est une
fonction a(n - 1 - a)-propre du laplacien sur H". (Dans ces coordonnées,
A y2(AEuclidien) - {n ~ 2)y^.) La construction de Patterson-Sullivan (cf.
[Sul2]) implique l'existence pour a dimL(A) k - 1 (car A est un réseau
de Stab (H*)) d'une application continue A-équivariante

p: Hn -*M+(Sn~l)
X »-> ßx
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telle que —(0 ^ a1 ®. De plus, a est concentrée sur l'ensemble limite
di±y <E>(y,a,0

L(A) SJ^1) de A. La fonction u(x) /s„-i <E>(x,a,£)d/xo(0 (où.

OgH" est tel que y(0) 1 pour x G H" est une fonction a(n— 1 — a) -propre
du laplacien sur Hn. Et

u{x) " Lm^DdM0 L
L'application u est donc A-invariante et de carré intégrable sur F H*/A. On

paramètre T par F x Sn_(/:+1) x [0, +oo[. La métrique sur F x S"~(*+1) x {/?}
est multipliée par cosh R sur F et par sinh/? sur Sn~~(/:+1). Donc l'élément
de volume est multiplié par un facteur de l'ordre de e^n~^R. La valeur de w,

quant à elle, est multipliée par un facteur de l'ordre de e~aR. Ainsi, l'intégrale
sur T — F est une intégrale double

jf° J u2daRdR0( jT e(-2a+"-l>R (J
où da est l'élément de volume sur F x Sn-(^+i) et daR l'élément de volume

sur F x Sn~(M) x {/?}. L'intégrale est finie si 2a > n— 1. Donc, si 2k > n+1,
Xo(T) < (&—1) (n—k). Enfin, il est connu que dans tous les cas Xq(T) < (^^)2
(cf. Appendice pour plus de détails).

3. Conclusion. Soit e un réel strictement positif. Compte tenu de la

caractérisation de Rayleigh (cf. [Ch]), il existe une fonction / de classe C°°

sur T à support compact K telle que

It WW ^ \ (T\ I -w
Mais la suite (Mm) de variétés hyperboliques converge uniformément sur tout

compact vers la variété tube T. Donc, il existe un entier mo tel que la variété

Mmo contienne un compact Kf isométrique à K. On en déduit l'existence
d'une fonction /' sur Mm de classe C°° à support inclus dans K' telle que

\w il2

UJ'\2
-Ao(r)+£-

L'intégrale de f sur Mo n'a pas de raison d'être nulle, mais on peut introduire
la fonction

y J vol (M
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Lorsque rao est grand fM |g'\2 est proche de fM |ff\2 et
"'0 m0

/ 5' 0.
JMmo

La caractérisation de la première valeur propre du laplacien par les quotients

de Rayleigh (cf. [Ch]) permet alors de conclure la preuve du théorème 4.

L'idée de faire converger des revêtements finis de M vers une variété tube

est empruntée à l'article [BLS] où elle est appliquée à l'étude du dual unitaire
des Q-groupes semi-simples.

Lorsque 2k > n + 1, le théorème 4 nous dit bien (comme annoncé dans

l'introduction) que M a virtuellement des petites valeurs propres.
En Appendice, on détermine explicitement le spectre des variétés tubes.

Lorsque k — n~ 1, d'après le théorème 2, on sait que M a virtuellement

un premier nombre de Betti positif donc grâce à la formule de Trace de

Seiberg [R] ou plus simplement en utilisant les quotients de Rayleigh, on peut
montrer que M admet des revêtements avec des valeurs propres aussi petites

que l'on veut.

Variétés arithmétiques «non standard». En dimension impaire, on a vu
qu'il existe des variétés hyperboliques arithmétiques non standard. On en

esquisse la construction (cf. [Vin] et [LM] pour plus de détails).
Soient K un corps de nombres totalement réel, D une algèbre de

quaternions sur K muni de 1'involution a donnée par

cr(x) tr(x) — x, x G D.

Soit V un espace vectoriel de dimension m sur D et

h: V x V—>D

une forme anti-hermitienne non dégénérée (de telle manière que pour À,
Ii G D et v, w G V, h(\v,/iw) cr(X)h(v,w)fi). Soit G ~ SU(h) le groupe
spécial unitaire de la forme h. Supposons que h soit choisi de manière à ce
que

G(K®Q R) - SO (n, 1) x C,

où C est un groupe compact et n + 1 2m. Si O est l'anneau des entiers
de K, alors la projection T de G(O) sur SO(n, 1) est un réseau arithmétique.
Tout sous-groupe de T d'indice fini agissant librement sur H" donne lieu à
une variété hyperbolique; en dimension n ^ 3, 7 ce sont les seules variétés
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hyperboliques arithmétiques non standard. Concluons en montrant que le
théorème 4 s'applique à ces variétés. Soit W un sous-espace vectoriel de

V de dimension m — 1 et /i0 la restriction de la forme h a W. Choisissons
W de manière à ce que si H — SU(ho), alors

H(K (g)Q R) ^ SO(n - 2,1 )xC,
où C est un groupe compact. La projection A de H(ö) sur SO(n — 2,1) est

un réseau. Soit F\ un sous-groupe de F d'indice fini agissant librement sur
Hn. Notons Ai Ti DA ; Ai agit librement sur H"-2 et on a une immersion

canonique de Hn_2/Ai dans W/T\. Donc le théorème 4 s'applique et, pour
n > 6, W/Ti a virtuellement des petites valeurs propres. Compte tenu de

notre inventaire (cf. section 3) des variétés hyperboliques connues, on en
déduit :

FAIT. Toutes les variétés hyperboliques de dimension n > 6, n ^ 1 de

la liste du §3 ont virtuellement des petites valeurs propres.

Enfin, remarquons que d'après un théorème de R. Brooks [Br2], toute
variété riemannienne dont le groupe fondamental se surjecte sur un groupe
libre de rang deux admet une tour infinie de revêtements finis dont la première
valeur propre est uniformément minorée. En particulier, le théorème 2 assure

que toute variété hyperbolique compacte qui contient un cycle géodésique de

codimension 1 admet une tour de revêtements finis dont la première valeur

propre est uniformément minorée.

Appendice : Spectre des variétés tubes

Soient n, k deux entiers positifs, n> k. On rappelle qu'une variété tube

de type (n,k) est le quotient W/A de l'espace hyperbolique de dimension n

par un réseau A de Stab (H*) agissant librement sur tf CH". Dans la suite

on se fixe un tel groupe A, on note F Hk/A que l'on suppose compacte
et on note (ds)2 sa métrique. Dans cet appendice, on étudie le spectre du

laplacien de la variété tube T IF/A. La métrique sur T est donnée par
(cf. [Ch])

(dxf (cosh r)2(ds)2 -f (drf + (sinh rf(dof
où x — (s, r, &) avec s G F, r £]0, +oo[, a C Sn~~(*+1). On écrit



PREMIER NOMBRE DE BETTI ET SPECTRE DU LAPLACIEN 133

k

{dx)2 (cosh r)2 ^ gij{s\,..., sj^dsfisj + (dr)2

ij=1
n—(k+1)

+ (sinh r)2 hj(ß\ > • • • > 0n-(k+i))d0id6j

ij= 1

On note (resp. (hij)) l'inverse de la matrice (gy) (resp. (hy)) et \g\

(resp. \h\) le module de son déterminant. Alors le laplacien de T s'écrit

V i=l 1

7=1 J

n-{k+1) o n-(fc+l) ^
+ E WS ^ (sinhr)-^VD^-)

i= 1
1

7=1
J

oùD (coshr)2/c|p|(sinhr)2("~^+1))|/z|. Donc, si (p est une fonction de classe

C2 sur 7, le laplacien de est donné par:

A
1

AAï, ^ih7pÂ^-â?
/ \ dp 1

- (k tanh r + (n — (k+ 1)) coth r) — -h ASn-vc+iy(p
v ' or (smhr)z

Il existe un opérateur auto-adjoint canonique (que l'on note aussi À) sur L2(T)

qui étend le laplacien sur les fonctions C°° à support compact. Puisque T
est complet, toutes les extensions auto-adjointes coïncident et À est unique
[Ga]. On appelle fonction de type fini (À,/i) une fonction p sur T définie par
p(x) f{r)g{s)h{a) avec x — (r,s, o), f fonction C°° sur ]0, +oo[ à support
compact, g fonction C°° À-propre sur F et h fonction C°° p -propre sur
S"-$+i). La restriction de À aux fonctions de type fini (X, p) s'exprime à

l'aide d'un opérateur différentiel du second ordre sur ]0,+oo[. On suit [DS]
pour obtenir explicitement le spectre de cet opérateur. On en déduira le spectre
cr(À) de À en utilisant la densité des fonctions de type fini et le théorème
spectral. Soit A(r) (coshr)^(sinhr)"~(/c+1).

1. Etude des fonctions de type fini. Soient À et p deux valeurs propres
des opérateurs À/? et Àgn-^+o. On note E\ et Fß leurs espaces propres
associés. Soient / une fonction de classe C2 sur ]0,+oo[, g e E\, h £ F^
et cp la fonction sur T définie par p{x) f(r)g(s)h(cr), avec x (r, j,cr).
On a

A<p(x) (Dx,fxf) (r)g(s)h{cr),
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OU

Dx'ßf
A(r)

d df
3r [A{r +

A LL

+ /•(coshr)2 (sinhr)2

De même que pour le laplacien, il existe un unique opérateur auto-adjoint
(que l'on note aussi Ga,m) sur L2(0, oo;A(r)dr) qui étend l'opérateur Ga,m

sur les fonctions C°° à support compact. Il est connu (cf. [DS]) que le spectre
ct(Oa,m) de Da,^ est réunion disjointe du spectre discret

crd(DajM) — {v | Da,^ — vl n'est pas injective}

et du spectre continu

(jc(Da)M) {v | (Ga— vl)~l existe mais n'est pas continue}

Soit ae(n\)fJ) le spectre essentiel de Oa,^ i-e- l'ensemble des points non-isolés
de ^(Ga,^)- L'ensemble <t(Ga,m) — ^(Ga,^) est un ensemble fini d'éléments
de Ga,^)- Pour r proche de l'infini, l'équation

(1) Da,- p2-s2)/ 0 (avec et j C)

devient
d2 .d

W+(n-l)dr-iP ~S))f °-

Les solutions de cette équation sont asymptotes à const• e^p±^r. Donc, d'après
[DS; XIII.7.40], ae(Ga)M) [p2, +oo). Étudions maintenant le bas du spectre.
On cherche une solution explicite à l'équation (1). L'opérateur étant elliptique,
on cherche (cf. [Ru]) / dans L2(0, oo\A{r)dr) D C°°. On sait (cf. [Ch]) que
l'on peut écrire p l(n — (k -j- 2) 4- T) avec l G N et A t(k — 1 — t) avec

te[o,*-i]u(*=± + i R+). On cherche alors une solution à l'équation (1)

sous la forme
(sinhr)'

/(r) (côshrj7

avec p C°°. On a

- t^[|"(A(r)/'(r»]
A(r) or

- (sinhr)'
W'{r)+ (p'(r)((n ~(k1) + 21)coth -fc) tanhr)

(coshr)rL v 7

/Z(n-(fc + 2)-|-/) m(m — (k — 1)) „ 1 7 ^+ p(r)( ~2 ~2 h (l ~ t)(n — 1 + l — f)JJ
sinh r cosh r

L'équation (1) s'écrit donc (après simplification par i—GL):
(cosh r)'
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(2) f"(r) + ip'(r)[(n— (fc + 1) + 2Z)coth r

+ (k-tanh + <p(r)((p')2 — 0

où p' p + l-1.Or l'équation (2) possède une solution régulière en 0 qui

s'exprime à l'aide de la fonction hypergéométrique (cf. [Er]) :

<ps(r) (coshr)r-p'2Fx(\(p+1-t-s),\{p--k +1 +1+1 -5); 2=4 + /; tanh2 r)

Donc une solution régulière en 0 de l'équation (1) est donnée par

fs(r) (tanhr)'(cosh r)s~p2F\ (^{p+l—t—s),+^+Z;tanh2r).

Et ([Er, p. 104]), pour Re(i) > 0,

/s(r) £(5)^-^(1+0(1))

quand r —> +00, avec

cto 2T* nhin-k) + ms)
n\(s +p+i- t))T( i(s + p-k+i + t+1))

Les valeurs propres de l'opérateur D\(dans L2(0,oo;A(r)dr)) inférieures
à p2 sont donc les nombres p2 — s2 où s est un zéro positif de c(s). On

obtient donc a(n\tfJL) {p2 — s2 | 5 > 0 et c(j) 0} U [p2, +00).

2. Conclusion. L'espace L2(0, 00; A{r)dr) <g> 0 (0^-F^) est dense

dans L2(T) et l'opérateur À sur L2(T) induit sur chaque sous-espace
L2(0, oo\A(r)dr) <g> E\ 0 l'opérateur 0^0 Id. Donc, d'après le
théorème spectral, on obtient:

THÉORÈME 5. Soit A un réseau cocompact de Stab(H^) agissant librement

sur C Hn. Soit F Hk/A et T Hn/A. Le spectre L2 de la
variété tube T est la réunion du spectre essentiel <7e(À) [p2,-hoo) et des

petites valeurs propres p2 — s2 où p et s t — l — p — 2p G]0, p] avec

p,/GN et t(k — 1 — t) dans le spectre de F.

En particulier, si k — 1 > p (i.e. 2k > n + 1), en prenant t k — 1,

p l 0 on obtient que p2 - (k- 1 - p)2(k -1) (n - k) est dans le spectre
L2 de T.
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