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It follows that
00X # X, #5* x St T+ T, + Jo) = 3(m(m + 1) + n(n + 1)) /7

(and o, = 0). With the given constraints on m and n, this can only be zero
for m = n =0 (even if we allow for the orientation of the summands to be
changed).

For the allowed choices of m and n, this connected sum is homotopy
equivalent to HP?#HP?#S* x §*. The fact that the homotopy equivalence
Xm,Xn =~ Xo induces a homotopy equivalence of the connected sums is a
simple consequence of the Whitehead theorem, since we are dealing with
simply-connected manifolds. This concludes the proof of Proposition 6. []

4. EXISTENCE OF ALMOST COMPLEX STRUCTURES

In this section we prove Theorem 4(b). We already know that condition
(b) (1) 1s necessary. We now show that condition (b) (ii) is necessary.
Given an almost complex structure J on M, we have

2x(M) — 2¢1(J) e3(J) + c2(J)* — pa(M) = 0

by (1). In the sequel we suppress M and J. In case Iy, c¢; is a torsion class,
so this simplifies to

2x+c%—p2:0.

Squaring the relation p; = ¢? — 2c,, and again observing that ¢; is a torsion
class, we get p? = 4c%. Multiplying the equation above by 4 and substituting
p? for 4¢3 yields condition (b) (ii).

In fact, this argument also shows that (b)(ii) is a sufficient condition.
By (a) we have a stable a.c.s. J on M and thus a corresponding Jy as in
Section 3. If condition (b)(ii) holds, then reversing the argument just given
we find

40o(M, Jo) = 2x(M) + c2(Jo)* — p2(M) = 0.

Since Jp is induced by 7, the stable part 0, of the obstruction vanishes as
well, so Jy extends to an almost complex structure on M.

Next we prove that condition (b)(i) is sufficient for the existence of an
a.c.s. We begin with a preparatory lemma.
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LEMMA 10. Let M be an 8-manifold with b, > 0 which satisfies the
assumptions of Theorem 4(a). Then there is a family J, k € Z, of stable
almost complex structures on M such that

c1(T0) e3(T) = e1Jo)es(Jo) + 4k

and N _
co(Jr) = ¢2(Jo) modulo 2-torsion

so in particular cz(j )2 = cz(:fo)z.

Proof. Case 1: By Theorem 3(a) we can find a stable a.c.s. 70 such
that the free part x of cl(:fo) is indivisible. By Poincaré duality there 1is
an element ¥ € HS(M;Z) such that ¢;(Jo)x¥ = xx’ = 1. Then the pair
(cl(jo),q(jo) + 4kx'), k € Z, still satisfies the assumptions of Theorem 3(a),
so there are stable almost complex structures 7, v, k€ Z, with

c1i(Jp) = c1(Jo) and c3(J) = c3(Jo) + 4kx’ .

This is the desired family, since the relation p; = ¢} — 2c, shows that ¢, is
determined modulo 2-torsion by ¢; and p;.

Case I, : Let .70 be a stable a.c.s. such that 01(70) is torsion. Let x be
an indivisible element of H*(M;Z) and x’ a dual element of H(M;Z), i.e.
xx' =1 and yx’ = 0 for all y in a complement of Zx C H*(M;Z) (of course
x" depends on the choice of this complement). Then by Theorem 3(a) there
exists a stable a.c.s. jk with

il =c1(Jo) +2x and c3(Jp) = e3(To) + 2k’
This family has the desired properties. [

_ Now, assuming that condition (b) (i) is satisfied, we choose a stable a.c.s.
J on M as in the proof of the preceding lemma. Hence we get an a.c.s. J;
on M — D? with

oM, J1) =(a1,0) € ZDZ,.
If a; is even, then by formulae (1) and (2) for o and the preceding lemma,

we can find a different a.c.s. J; on M — D® with o(M,J7) = (0,0), so that
Ji extends to an a.c.s. on M.

We complete the proof of Theorem 4 by showing that a; has to be even.
Since

oM #HP* #HP? J, + Jo + Jo) = (a; — 2,0),

we can find an 8-manifold M, and an a.c.s. J, on M, — D® with
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o(M, J) = (—az,0)
with a; > O of the same parity as a;, and
X(M3) —T(M5) = x(M) —7(M) =0 mod 4.

Then
o(My #apS* x §%,J, 4 azJg) = (0,0).

So M, #a,S8* x §* admits an a.c.s. Now compute

(X — ) M #aS* x §*) = x(My) + 2a2 — T(M>)

=2a; mod 4.

By the necessity of condition (b) (i) we conclude a; =a; =0 mod 2. [
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