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ALMOST COMPLEX STRUCTURES ON 8-MANIFOLDS

by Stefan MULLER and Hansjorg GEIGES

I. INTRODUCTION

Throughout this paper, M denotes a closed, connected, smooth and oriented
manifold of even dimension 2n. Our main goal is to give a criterion for the
existence of almost complex structures on §-dimensional manifolds.

Recall that an almost complex structure (a.c.s.) on M is an endomorphism
J of the tangent bundle TM satisfying J?> = —1. This gives TM the structure
of a complex vector bundle, and we write ¢;(J) for its Chern classes. The
orientation of M is required to coincide with the orientation induced by this
complex vector bundle structure on 7M.

Equivalently, we may think of an almost complex structure as a reduction of
the structure group from the special orthogonal group SO,, to the unitary group
U, . In enumeration questions one is of course interested in the classification
of almost complex structures up to homotopy. As is well-known [15, §9.5],
another equivalent way to think about an almost complex structure is as a
cross-section of the SO, / U,-bundle associated to TM . This viewpoint will
be particularly relevant in Section 3.

Similarly, a stable almost complex structure on M is a reduction of the
structure group of the stable tangent bundle of M from SO to U.

Thus, necessary conditions for the existence of a stable a.c.s. are the
existence of integral lifts ¢; € H¥(M;Z) of the even Stiefel-Whitney classes
wy(M) € H*(M;Zy), that is, wy(M) = poc;, with p, denoting mod 2
reduction. Given an a.c.s. J, the class c¢,(J) will be the Euler class of TM
(which we may identify with the Euler characteristic x(M)). Indeed, a stable

a.c.s. J induces an a.c.s. if and only if cn(f) = x(M), see [17].
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An oriented surface clearly carries a unique a.c.s. since SO, = U;. For
dimM = 4, the existence of an integral lift of w,(M) is necessary and
sufficient for the existence of a stable a.c.s., and this condition is always
satisfied, see [11]. Furthermore, the integral lifts ¢; of w,(M) completely
classify the stable a.c.s. With 7(M) denoting the signature of M, a well-
known result of Wu (cf. [11]) asserts that a.c.s. on M are classified by those
integral lifts ¢; that satisfy the signature formula

(c2,[M]) = 37(M) + 2x(M)..

A reformulation of this theorem was found independently by Dessai [2]
and the first author (unpublished). Write b; for the Betti numbers of M,
and b (resp. by ) for the dimension of the positive (resp. negative)
eigenspace of the intersection form Q on H,(M;Z). Then, observing that
xM) +17(M) = 2(1 — by + b; ), Dessai’s Theorem 1.4 can be stated as
follows.

THEOREM 1 (Dessai). An oriented 4—manifoldr M admits an almost
complex structure if and only if x(M)+ 7(M) = 0 mod 4 and one of the
following conditions is satisfied :

(1) Q is indefinite.
(i) Q is positive definite and by — b, < 1.
(i11)) Q is negative definite and, in case by <2, 4(by — 1) + b, is the sum
of b, integer squares.

REMARK. Observe that in case (iii) with b, equal to 1 or 2, the condition
xM) +7(M) =0 mod 4 is implied by the other conditions stated.

The advantage of this formulation over that of Wu lies in the fact that the
existence of an a.c.s. is expressed solely in terms of topological invariants of
M rather than by requiring the existence of a solution to the signature formula
in the potentially infinite set p, '(w,(M)) C H*(M;Z).

Note that for manifolds of dimension 4k, the condition

x(M) = (—=1*r(M) mod 4

is necessary for the existence of an a.c.s., as was observed by Hirzebruch [10,
p-777). This follows from an integrality argument involving the Todd genus. :

Dessai also gives a finiteness criterion for a.c.s. The following is a direct
consequence of [2, Thm. 2.2].
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PROPOSITION 2 (Dessai). Let M be a 4-manifold admitting an a.c.s.
There exist only finitely many a.c.s. on M if and only if one of the following
conditions holds :

(1) The intersection form Q of M is definite.
(il) Q is indefinite, by #2, b, = 2.

Observe that the obstructions to the existence of an a.c.s. on M (with
dimM = 2n) lie in H*(M; T—1(SO2, / Uy)). For dimM = 6, the only non-
zero coefficient group here is m(SO¢ /Uz) = Z (cf. [13]). The obstruction
to the existence of an a.c.s. on a 6-manifold has been identified as the
third integral Stiefel-Whitney class Wi(M) = Bwy(M) € H3(M:;Z), where
B denotes the Bockstein homomorphism induced by the coefficient sequence

y/ ﬁ» Z — 7, (notice that W3(M) = 0 is equivalent to the existence of an
integral lift of w,(M)). Indeed, W3(M) is the first obstruction to the existence
of an a.c.s. in any dimension, see [13]. Furthermore, homotopy classes of
a.c.s. on a 6-manifold are classified by the integral lifts ¢; of wy(M), cf. [4].
The corresponding existence result for §-dimensional manifolds is due to
Heaps [6]. Write Sq* for the Steenrod square and p;(M) for the Pontrjagin
classes of M. In the sequel, cohomology classes in H®(M;Z) are usually
interpreted as integers under the evaluation on the fundamental cycle [M].

THEOREM 3 (Heaps). (a) An oriented 8-dimensional manifold M ad-
mits a stable almost complex structure if and only if Bw,(M) = 0 and
wg(M) € qu HS(M;Z). In this case, any integer lift of wy(M) can be realized
as c1(J) of some stable almost complex structure J. Furthermore, any pair
(u,v) € HXM;Z) x HXM;Z) with (py(u), p2(v)) = (wo(M), we(M)) can be
realized as (c1(J), c3(J)) for some stable almost complex structure J provided
2x(M) 4+ uv =0 mod 4.

(b) M admits an almost complex structure if and only if the conditions
in (a) are satisfied and if there is a pair (u,v) as in (a) with

8x(M) — 4p(M) + p1(M) = 8uv — u* + 2u*p (M) .
Implicit in statement (a) is a result of Massey that Swe(M) = 0 for

any &-dimensional M. Heaps also proves a corresponding statement for
10-manifolds under some additional topological assumptions, see also [2].
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Our following main result stands in the same relation to that of Heaps as
Dessai’s theorem to that of Wu. Write TH2(M) for the torsion subgroup of
H*(M;Z). We distinguish three cases:

o case I:  p; Nwa(M) NTHX M) = @.
o case II,:  p; ' (wa(M)) NTH*(M) # @ and by(M) > 0.
o case Ilp: p; ' (wa(M)) N TH?*(M) # @ and by(M) = 0.

Notice that case I implies that w,(M) 5 0. An example that the converse
is false is provided by M = E x $*, with E denoting an Enriques surface.
Here w,(M) # 0, but we are in case II .

THEOREM 4. (a) An oriented 8-dimensional manifold M admits a stable

almost complex structure if and only if Bw,(M) = 0 and, in case 1],
xM) =0 mod 2.

(b) M admits an almost complex structure if and only if the conditions
of (a) hold and

(1) xM)=7M) mod4 in cases I and 11,
(1) 8xM) —4p,(M) —}—p%(M) = 0 in case Il.

REMARK. By the observation of Hirzebruch mentioned above, the con-
dition x(M) = 7(M) mod 4 is certainly necessary for the existence of an
a.c.s. on an 8-manifold. This condition is implied by (b) (ii).

Here is a simple example. Give CP* its natural orientation induced by the
complex structure, and write CP* for the same manifold with the opposite
orientation. Consider the connected sum M = #,CP* #SEF*'. Then we are in
case I and (M) —7(M) =2r+4s+2. So M admits an a.c.s. if and only if
r is odd. There is an analogous statement for #,CP? #SE_P_Z, see [1].

Theorem 4 will be derived from some explicit calculations of obstruction
classes. Only Theorem 3(a), but not 3(b), will be used for the proof of
Theorem 4. The following is an immediate corollary.

COROLLARY 5. On 8-dimensional manifolds M with b, > 0 the existence
of an a.c.s. depends only on the oriented homotopy type of M. [J

This is false if b, = 0.
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PROPOSITION 6. The manifold M = HP? #HP*#S5* x §* admits an almost
complex structure. There are 8-manifolds homotopy equivalent to M which
do not admit any almost complex structures.

More generally, Kahn [12, Cor. 6] has shown, for every k > 1, the existence
of pairs of closed, connected, oriented manifolds M, M, of dimension 8k
such that M; and M, have the same oriented homotopy type, but only
one of them admits an almost complex structure. According to the results
already mentioned, dimension 8 is indeed the smallest dimension where this
phenomenon can occur.

A further simple corollary concerns the compatibility with different choices
of orientation.

COROLLARY 7. In case I, if M admits an a.c.s., then M (i.e. M with
reversed orientation) admits an a.c.s. if and only if x(M) =0 mod 2.
In case 11, either both M and M or none of them admits an a.c.s.

In case 1y, if M admits an a.c.s., then M admits an a.c.s. if and only if
xM)=0. [O

See [1] for related statements in the 4-dimensional situation.

Using the first author’s original method of proof (cf. the acknowledgements
below), it is possible to determine the set of all pairs (u,v) satisfying the
conditions of Theorem 3; see [14] for details in the torsion-free case. These
results lead to the following finiteness criterion, which is equivalent to the
corresponding case in Theorems 2.2 and 2.3 of [2].

PROPOSITION 8. Assume the oriented 8 -manifold admits an almost complex
structure. Then the number of a.c.s. on M is finite if and only if b, =0, or
by =1 and 8x(M) —4p,(M) + p2(M) #0. [

We note in passing that applying this result to complete intersections
corrects an error in [7]; see [14, §4.5.2.] and [2, §2.3].

ACKNOWLEDGEMENTS. Theorem 4 was proved in the torsion-free case in
the first author’s Ph.D. thesis [14] written under the guidance of Ch. Okonek.
The first author thanks him for his support, and also P. Lupascu for
many fruitful conversations. The work [14] was partially supported by the
Schweizerischer Nationalfonds SNF under grant no. 2000-045209.95/1.
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Theorem 4 in the general case is also due to the first author. The present
joint note grew from the second author’s observation that the original proof
can be simplified and be made more geometric by appealing to considerations
in [5].

This work was completed during a visit by the second author to the
Forschungsinstitut fiir Mathematik (FIM) of the ETH Ziirich. He thanks the
FIM for its hospitality and support.

2. STABLE ALMOST COMPLEX STRUCTURES

To derive Theorem 4(a) from Theorem 3(a) we merely have to show that
the condition wg(M) € qu H%(M;Z) is void in case I and equivalent to
xM)=0 mod 2 (i.e. wg(M)=0) in case II.

Indeed, in case I we find an integral lift u of w,(M) whose free
part is indivisible. Then there is a dual element ' € H®(M;Z) such that
uw' =1 € H3(M;Z). By the Wu formula it follows that

Sq* HS(M; Z) = wy(M) HS(M; Z) = py(u HS(M;; Z)) = H3(M; Z,) .

In case II, on the other hand, we can lift w,(M) to a torsion class
u € HX(M;Z), thus

Sq* H(M;Z) = p,(u HS(M;Z)) = 0.

3. THE TOP-DIMENSIONAL OBSTRUCTION

Assume we have an almost complex structure J, over M with a disc D8
removed (which is homotopy equivalent to the 7-skeleton of M). Thinking of
an almost complex structure J as a section of the SOg /U, -bundle associated
to TM, we may interpret Jy as such a section defined only over the 7-skeleton
of M. The obstruction o(M, Jy) to extending Jy to an almost complex structure
on M then lives in

H3(M; 7,(SOg /Uy)) = m7(SOg JUs) X Z DL, .

See [13] for references to the computations of the homotopy group above
and others used below. The homotopy group involved here is in fact the
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first non-stable homotopy group of SOg/U,. As a consequence of this fact
that the coefficient groups m;(SOg / Uy) for the lower-dimensional obstructions
are stable (that is, m;(SOg /U) = (SO /U) for i < 6), any stable almost
complex structure J on M induces a Jy as described. The stabilizing map

S: m(SOg / Uy) — m7(SO / U)
Z ® Z2 — Z2

is surjective, cf. [5, p.1213]. Define the splitting m(SOg /Us) = Z ® Z, by
identifying ker S with Z. We can then write unambiguously

oM, Jo) = 0o(M, Jo) + 02o(M,Jo) EZ D Z, .
Theorem II of [13] now states that
(1) 4oo(M, Jo) = 2x(M) — 2¢1(Jo) ¢3(Jo) + €2(Jo)* — p2(M) .

Given the relation between Pontrjagin and Chern classes, the obstruction
00(M,Jy), for Jp induced from a J as above, can also be expressed as
ooM, Jp) = (x(M) — 04(f))/2. So formula (1) can be regarded as a special
case of the more general result in [17], already referred to in the introduction,
that a stable a.c.s. J induces an a.c.s. if and only if the top-dimensional Chern
class of J equals the Euler class of M.

We can also identify the stable part 0,(M,Jy) of the obstruction.

LEMMA 9. Given an almost complex structure Jy over M — D¥, we have
c1(Jo) c3(Jop) =0 mod 2, and we can set

(2) 02(M, Jo) = p2 (x(M) + 3c1(Jo) c3(Jo)) -

Proof. The Wu relations wy =) ek Sq"(vj) translate into vy-—=:w; =0
(M is orientable), v, = w;, and v3 = ws = 0 (since even W5 = Buws-is zero
if there is an a.c.s. over the 3-skeleton). So we get further that wg = Sq2 Vs
Using the Adem relation Sq*Sq? = Sq>Sq' we obtain

pa(c1Jo) 3(Jo)) = wows = Sq* wg = Sq* Sq° vs
= Sq3Sq1 vg=v3 USqlus = 0.

So it is possible to define 0,(M,Jp) as stated, and by Theorem 3(a) this is
indeed the obstruction to extending J, to a stable a.c.s. J over M. O
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If M = S8, then Jy is unique up to homotopy (the 7-skeleton of S% is
contractible), so we can write 0(S®) for extending any Jy to all of S®. The
formulae just stated give

oSH=(1,0eZaZ,.

Results of Kahn [12] (which hold in a more general context, cf. the
discussion and applications in [5]) now state the following: An almost complex
structure Jo on M — D?® gives rise to a canonical almost complex structure
Jo on M — D8, where M denotes M with reversed orientation, and we have

o(M,Jo) = —o(M, Jo) + x(M)o(S®).

Similarly, almost complex structures J; on M; — D?, i = 1,2, give rise to a
canonical almost complex structure J; +J, on the connected sum M; #M, —D?
such that

o(My # My, Jy + J5) = o(My,J1) + o(Ma, Jo) — o(S%).

We now compute the obstruction o for a few examples. First we consider
the quaternionic projective plane HP?. By [8] the total Pontrjagin class of
HP? is

p(HP?) = (1 4+ w)’(1 +4u)~ ! =1 4 2u+ 7u?,

where u is a suitable generator of H*(HP?;Z) = Z. Since 73(SOg /Uy) &
m3(SO /U) = 0, the structure group of THP? reduces to U; over the
4-skeleton S* = HP! c HP?. Write Jy for the resulting a.c.s. on HP? — D%,
This structure is unique (up to homotopy), since reductions of the structure
group over the 4-skeleton M® are classified by H*(M®;m4(SOg / Uy)) = 0
(the coefficient group is trivial). The relation p; = c% — 2¢2 (which holds for
any complex bundle) implies c3(Jp) = —u. By (1) we find that

4 0o(HP?, Jo) = 2x(HP?) + c2(Jo)* — p2(HP?)
= 6 — 6(u*, [HP?]),

where [HP?] denotes the orientation generator of Hg(HP?*;Z). Now u? is
a generator of H 8(HP?*,Z), so if we define the orientation of HP? by the
condition (u?,[HP*]) = 1, then oo(HP?,Jp) = 0. With (2) we conclude

c(HP . J)=0,D)ecZdZ,.

Thus HP? does not admit any a.c.s. (with either orientation, for with the
opposite orientation we have even oy # 0).
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We note in passing that the non-existence of an a.c.s. on HP? is also a
consequence of a more general result due to Hirzebruch [9, p.124], which
states that for an 8-dimensional almost complex manifold with b, = O the
Euler characteristic has to be divisible by 6. This follows from a cobordism
theoretic argument which shows that the condition cyc3 +2¢c4 =0 mod 12,
which holds for complex algebraic manifolds, must in fact hold for any almost
complex 8-manifold.

Next we compute o for S* x $*. Again we can find a unique a.cs. J,
over §* x §* — D8, since this retracts to the 4-skeleton $*V $*. This manifold
is stably parallelizable, so its total Pontrjagin class is equal to 1. It follows
that ¢(J5) = 0. Thus we find

o(S* xSt IN=02,00cZZ,.

Again, we see that S* x $* does not admit any a.c.s., independently of
the orientation. This example shows that the condition ¥ = 7 mod 4 is not
sufficient for the existence of an a.c.s. in case II,.

Proof of Proposition 6. We compute

o(HP?* #HP*#5* x §*,Jo + Jo + Jb) =

so HP? #HP?#S5* x §* admits an almost complex structure.

To prove the second part, we argue as follows. Eells-Kuiper [3] and
Tamura [16] have constructed a family X,, of 3-connected 8-manifolds for
integers m satisfying m(m + 1) = 0 mod 56. Moreover, if m = 0 mod 12,
then X,, is homotopy equivalent to HP?, and X, = HP?. So the X,, with

m = 12k and k=0 or 4 mod 7 constitute a family of 8-manifolds homotopy
equivalent to HP?. They satisfy

p1(Xm) = 22m + Du,
with u a generator of H*(X,,), and
P2(Xm) = 2(42m + 1)* + 45)% .

Hence, with J,, denoting the unique a.c.s. over the 4-skeleton X,(,‘}) ~ $* and
with the orientation of X,, defined by u?, a straightforward calculation yields

00Xom, Jon) = 3m(m + 1)/7 .
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It follows that
00X # X, #5* x St T+ T, + Jo) = 3(m(m + 1) + n(n + 1)) /7

(and o, = 0). With the given constraints on m and n, this can only be zero
for m = n =0 (even if we allow for the orientation of the summands to be
changed).

For the allowed choices of m and n, this connected sum is homotopy
equivalent to HP?#HP?#S* x §*. The fact that the homotopy equivalence
Xm,Xn =~ Xo induces a homotopy equivalence of the connected sums is a
simple consequence of the Whitehead theorem, since we are dealing with
simply-connected manifolds. This concludes the proof of Proposition 6. []

4. EXISTENCE OF ALMOST COMPLEX STRUCTURES

In this section we prove Theorem 4(b). We already know that condition
(b) (1) 1s necessary. We now show that condition (b) (ii) is necessary.
Given an almost complex structure J on M, we have

2x(M) — 2¢1(J) e3(J) + c2(J)* — pa(M) = 0

by (1). In the sequel we suppress M and J. In case Iy, c¢; is a torsion class,
so this simplifies to

2x+c%—p2:0.

Squaring the relation p; = ¢? — 2c,, and again observing that ¢; is a torsion
class, we get p? = 4c%. Multiplying the equation above by 4 and substituting
p? for 4¢3 yields condition (b) (ii).

In fact, this argument also shows that (b)(ii) is a sufficient condition.
By (a) we have a stable a.c.s. J on M and thus a corresponding Jy as in
Section 3. If condition (b)(ii) holds, then reversing the argument just given
we find

40o(M, Jo) = 2x(M) + c2(Jo)* — p2(M) = 0.

Since Jp is induced by 7, the stable part 0, of the obstruction vanishes as
well, so Jy extends to an almost complex structure on M.

Next we prove that condition (b)(i) is sufficient for the existence of an
a.c.s. We begin with a preparatory lemma.
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LEMMA 10. Let M be an 8-manifold with b, > 0 which satisfies the
assumptions of Theorem 4(a). Then there is a family J, k € Z, of stable
almost complex structures on M such that

c1(T0) e3(T) = e1Jo)es(Jo) + 4k

and N _
co(Jr) = ¢2(Jo) modulo 2-torsion

so in particular cz(j )2 = cz(:fo)z.

Proof. Case 1: By Theorem 3(a) we can find a stable a.c.s. 70 such
that the free part x of cl(:fo) is indivisible. By Poincaré duality there 1is
an element ¥ € HS(M;Z) such that ¢;(Jo)x¥ = xx’ = 1. Then the pair
(cl(jo),q(jo) + 4kx'), k € Z, still satisfies the assumptions of Theorem 3(a),
so there are stable almost complex structures 7, v, k€ Z, with

c1i(Jp) = c1(Jo) and c3(J) = c3(Jo) + 4kx’ .

This is the desired family, since the relation p; = ¢} — 2c, shows that ¢, is
determined modulo 2-torsion by ¢; and p;.

Case I, : Let .70 be a stable a.c.s. such that 01(70) is torsion. Let x be
an indivisible element of H*(M;Z) and x’ a dual element of H(M;Z), i.e.
xx' =1 and yx’ = 0 for all y in a complement of Zx C H*(M;Z) (of course
x" depends on the choice of this complement). Then by Theorem 3(a) there
exists a stable a.c.s. jk with

il =c1(Jo) +2x and c3(Jp) = e3(To) + 2k’
This family has the desired properties. [

_ Now, assuming that condition (b) (i) is satisfied, we choose a stable a.c.s.
J on M as in the proof of the preceding lemma. Hence we get an a.c.s. J;
on M — D? with

oM, J1) =(a1,0) € ZDZ,.
If a; is even, then by formulae (1) and (2) for o and the preceding lemma,

we can find a different a.c.s. J; on M — D® with o(M,J7) = (0,0), so that
Ji extends to an a.c.s. on M.

We complete the proof of Theorem 4 by showing that a; has to be even.
Since

oM #HP* #HP? J, + Jo + Jo) = (a; — 2,0),

we can find an 8-manifold M, and an a.c.s. J, on M, — D® with
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o(M, J) = (—az,0)
with a; > O of the same parity as a;, and
X(M3) —T(M5) = x(M) —7(M) =0 mod 4.

Then
o(My #apS* x §%,J, 4 azJg) = (0,0).

So M, #a,S8* x §* admits an a.c.s. Now compute

(X — ) M #aS* x §*) = x(My) + 2a2 — T(M>)

=2a; mod 4.

By the necessity of condition (b) (i) we conclude a; =a; =0 mod 2. [
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