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With this notation we have a commutative square

Pic(C)[3]

(32) /
S(Q —H(C)[3]

where j: H(Q —> Pic(C) is the natural homomorphism [M,q,N] >-> [M].
Kneser [11, §6] has shown that j is an isomorphism (see also Section 2),

so the two vertical maps in (32) are bijections and the horizontal maps are

surjections.

Note that because of the exact sequence (31), the fibers of e' are in one-

to-one correspondence with the elements of the group Cx/Cx3. This is, of
course, equivalent to Theorem 5.2, Part (ii).

7. Explicit computations and cubic trace forms

In this section we assume that A C ® K is a quadratic étale algebra
over K. In this case the trace form (x,y) —> Tta/k(xy) is nondegenerate and

gives rise to a natural isomorphism between the codifferent

C' {x G A : Tr A/K{xC) C R}

and the dual C*. If M is a fractional C-ideal with M3 ~ C, then, by
Theorem 5.1, the cubic forms on M with primitive determining form are
given by

(33) Fu(x)lxA/K{uax3),
where a £ A is a fixed element with aM^ and m is a unit of C.
Moreover, by Theorem 5.1, two such forms Fu and Fv are C-isomorphic if
and only if u and v represent the same element of CX/(CX)3.

We shall compute explicitly some examples for Z using (33). In this
case we have C Z[t]/(f(t)), where is a monic degree-two polynomial
with distinct roots and coefficients in Z.

Let wbethe class of tinC. It is well-known, and easy to prove, that the
codifferent C" is a principal fractional C-ideal generated by where
/' is the derivative of /. Hence, [C*] is trivial in Pic(C) (note that this holds
more generally provided Pic (R) 0).
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EXAMPLE 7.1. Let C Z[1+^~^-] (note that 23 is the smallest square-
free positive integer N such that A Q(\/—N) has class number divisible
by 3 ; in fact Pic(C) ~ Z/3Z (see [2]). The class group Pic(C) is generated

by the class of
M — 2Z -{- cuZ

where uj Thus the three classes of Pic (C) are represented by
the ideals C, M and M. The quadratic forms attached to C, M and M are

respectively

xf + x\X2 + 6x^, 2xf + X\X2 + 3x^, 2xf — x\X2 + 3x|

One verifies also that 6 oj—2 satisfies M3 — 9C, thus (l/Q^/—23)M3 C'.
Hence, by (33), the cubic C-form on M is given by

where x — 2x\ + xyx). Similar computations can be done for M (taking
0 — — 1 — uj and the Z-basis {2, —1 + cu}) and for C (with the basis {1, cd}

The following table summarizes the results of these computations :

Module Cubic Form Determining Form

M —x] — 3x^X2 + 3xi^2 + 2x^ 2xi 4- X1X2 + 3x2

M X| — 3X]X2 — 3X1X2 + 2X2 2xi — X1X2 -1- 3x^

C X2(3x? + 3X1X2 — 5x1) 4 + X\X2 + 6x^

Example 7.2. Let C Here also Pic(C) ~ Z/3Z (see [2]) (in
fact 79 is the smallest square-free positive integer N such that Q(y/N) has

class number divisible by 3).
The class group Pic(C) is generated by the class of

M9Z + (4 + V79)Z.

Thus the three classes of Pic(C) are represented by the ideals C, M
and M. One verifies also that a 52 — 5\/79 satisfies M3 aC, thus

(l/2a\/79)M3 C. The fundamental unit of C is r 80-f-9\/79; hence,

by (33), the three nonisomorphic cubic C-forms on M are given by

F"w=Tr(2^r!)-
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where x 9*i + (4 + y/l9)x2 and k ** -1,0,1. Similar computations can

be done for M (taking the Z-basis {9, —4 + \/79}) and C (with the natural

basis {1,a/79}).

Module Cubic Forms Determining Form

M

—68*1 + 11 ljcfJC2 — 60*1*2 +11*2

5*? + 24*1*2 + 33*i*l + 16*2

868*? + 3729*i*2 + 5340*i*l + 2549*1

9*1 + 8*1*2 — 7*1

M

-868*1 + 3729*1*2 - 5340*i*i + 2549*1

—5*1 + 24*1*2 — 33*i *2 + 16*1

68*1 + 111*1*2 + 60*1*1 + H*2

9*1 — 8*1*2 — 7*1

C

—9*1 + 240*1*2 — 2133*i*l + 6320*1

3*1*2 + 79*1

9*1 + 240*1*2 + 2133*i*l + 6320*2

*1 — 79*1
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