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LEMMA 4.8. Suppose that C ® K is étale over K and let (M, F) and
(M',F') be cubic C-forms. Assume that the determining mappings qr,qr’
are nonzero. Then every R-linear isomorphism f: (M, F) — (M',F") is either
C-linear or C-sesquilinear.

Proof. The map f will induce an isomorphism of determining quadratic
mappings of type C. We conclude by Proposition 2.3. [

5. STRUCTURE OF THE CUBIC C-FORMS

We shall describe below the C-module structure of S3C(M *) and the
corresponding C-isomorphism classes.

THEOREM 5.1. Let M be a rank-one projective C-module. For each
¢ € Homc(M23,C*) we define a cubic form by Fy(x) = ¢(x ® x ® x)(1).
Then

(i) The correspondence ¢ +— Fg is an isomorphism of C-modules
Homc(ME?, C*) — SL(M™).

(i) The determining mapping qr, is primitive if and only if ¢ is an
isomorphism.

(i) Two cubic C-forms F and Fy on M are equivalent over C if and only
if there exists ¢ € C* such that F; = >F.

Proof. (i) This is a restatement of Proposition 3.7. The map ¢ — Fy is
a C-isomorphism by definition of the structure of C-module on S3(M*) in
Section 3.

(1) It is enough to prove our assertion locally, so we assume that M is
free over C. Write M = Cm for some m € M. Let A = ¢(m@m®m). Then
we have ¢(xm @ ym ® zm) = A(xyz). Let S(ym,zm) = A(yz) and observe that
A is a basis of C* over C if and only if the symmetric bilinear form (3 is
unimodular. We have

gr,(xm) = n(x)qr, (m)
= n(x) \* B.

It follows from this equality that gr, is primitive if and only if 8 is unimodular,
that is, if and only if ¢ is an isomorphism.
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(ii1) Let F and F; be cubic C-forms on M. Suppose that they are
C-1somorphic. Then there exists ¢ € C* such that F; = Fol.. Let T be the
symmetric trilinear form associated to F. Since T(cX,cy,cz) = T(c’x,y,z),
we get F; = c3F. Conversely, if F; = ¢’F we may reverse these steps to
conclude that F; = Fol. []

We shall henceforth denote by Cubicc(M) the set of C-isomorphism classes
of cubic C-forms on M with primitive determining mapping. Recall that when
M 1s an invertible C-module, there is a unique primitive quadratic mapping
(M,q,N) of type C on M ([11]). If F € Cubicc(M), then necessarily

(M, qr, D(M)) = (M, q,N) in H(C), and C=C"(M,qr, DM)),

by Corollary 4.7 (i1) ; in particular, all members of Cubicc(M) have isomorphic
determining mappings.

THEOREM 5.2. Let M be a projective C-module of rank one.
(1) The set Cubicc(M) is nonempty if and only if 3[M] = [C*] in Pic(C).
(i) If 3[M] = [C*] in Pic(C), then the group CX/C><3 acts simply
transitively on the set Cubicc(M).

Proof. (i) By Part (ii) of Theorem 5.1, the module M admits a cubic
C-form with primitive determining mapping if and only if there is an
isomorphism Mz — C*.

(i1) Since M?3 and C* are invertible C-modules, IsomC(Mg?g‘, C*) is
either empty or it is a torsor for C* (i.e., a simply transitive C*-set). It is
nonempty if and only if Cubicc(M) is nonempty, by Part (i). Suppose this is
s0, and choose an isomorphism ¢: M% — C*. Each cubic C-form on M with
primitive determining mapping is uniquely of the shape F.4 with ¢ € C* by
Parts (i) and (i1) of Theorem 5.1. By Part (iii) of Theorem 5.1, the form F4
will be isomorphic with Fy4 if and only if ¢ € (C*)*. [

We discuss next the relation between R-isomorphism and C-homomorphism
of cubic forms.

Let Cubicg(M) be the set of R-isomorphism classes of binary Gaussian
cubic forms on M with primitive determining mapping of type C. Set

Sr(C) = | [ Cubicg(M) and §(C) = ] ] Cubicc(M),
M] M]
where [M] runs over the elements of Pic(C) satisfying 3[M] = [C*] and []
means disjoint union.
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The set S(C) carries a natural involution given by
[M,F] — [M,F] := [M,F],

where M is defined as follows: M = M as R-modules with C acting by
c-X = °x, where ¢ — ¢ is the canonical involution of C. This is well-
defined because g depends only on the R-module structure of M, and it
will be of type C for M if and only if it is so for M since n(c) = n(c).
Note that [M,F] = [M, F] if and only if (M,F) possesses a C-sesquilinear
automorphism.

PROPOSITION 5.3. With the previous notation we have
(i) 8r(C) = 8(C)/ ~, where ~ identifies [M,F] with [M,F].

(i) If [M] = [M] and 3[M] = [C*], then Cubicc(M) has an element [M, Fo]
fixed under the involution.

(ii) If [M] # [M] and 3[M] = [C*] in Pic(C), then Cubicc(M) =
Cubicg(M). In particular, Cubicg(M) is a simply transitive (C* /C >‘3)—set.

Proof. (i) Let ¢: (M,F) — (M',F’) be an R-isomorphism. Then % is
an isomorphism of quadratic mappings (M, gr, D(M)) — (M',F', D(M")). By
Proposition 2.3, the map v is either C-linear or C-sesquilinear. Hence either

[M,F]=[M',F'] or [M,F]=[MF].

(i1) We start out with an element [M, F] € 8(C), which exists by hypothesis
on M and by Theorem 5.2(1), and we choose a C-sesquilinear automorphism
0: M — M. We know by Theorem 5.2 that all the C-forms on M are of the
form wF with w € C*. In particular Foo = wF for some w € C*. An easy
computation using (21) shows (wF)oo =w(Foo), so Fo 0? = wwF . Since
o? is C-linear, it follows from Theorem 5.2 that ww € C*. Using the fact
that the cohomology of Z/2Z with coefficients in a group of odd exponent
(in this case C*/C 3 with Z/2Z acting via the canonical involution of C) is
trivial, we conclude that w = 7~ 'uv® for some u,v € C*. Let Fy = uF. By
direct computation we have Fyoo = v’Fy ; thus [M,F] = [M,Foo] = M, F]
as claimed.

(iii) If [M] 3 [M], by Part (i), no two distinct elements of Cubicc(M) can
be identified in Cubicgr(M), that is, the canonical projection

Cubicc(M) — Cubicg(M)

is a bijection. The second assertion follows from Theorem 5.2. [J
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COROLLARY 5.4. Let [M] € Pic(C) be as in Part (ii) of Theorem 5.3.
Let [M,Fy] € Cubicc(M) be a the fixed point of the involution. Then the
map (C*/C* 3) — Cubicc(M) given by u — [M,uFy] is an isomorphism of
Z /27 -sets. In particular, this correspondence induces a bijection Cubicg(M) ~
(C* /Cx3)/~, where ~ identifies ¢ with ¢.

Proof. By Theorem 5.2, it is enough to show that the map u —
[M,uFy] commutes with the action of Z/2Z via the involutions. Let
o: (M,Fy) — (M, Fy) be a C-isomorphism and let u € C*. Since (uFy)oo =
wW(Fy o 0), we have [M,uF,] = [M,uF,] = [M, (uF,) o 0] = [M,u(Fy 0 0)] =
M, uFy]. O

The above proposition applies in particular to the case of fields. We can
summarize our results in this case as follows:

PROPOSITION 5.5. Let K be a field of characteristic not 2 or 3. Let Sk
be the set of K-isomorphism classes of all binary cubic forms over K with
nonzero discriminant. Then there is a natural partition

(25) Sk = [ ] Cubick(C),
C

where C ranges over the quadratic étale K-algebras and each Cubicg(C) is
in one-to-one correspondence with the quotient of C* /(C*)* by the involution

c+—C.

Proof- If K is a field then Pic(C) = 0 for all quadratic K -algebras C.
Each cubic:form with nonzero discriminant will be a C-form for a unique
quadratic étale algebra, namely the even Clifford algebra of its determining
form, by Proposition 2.8 and Theorem 4.5. We finish by applying Proposi-
tion 5.3. [

As an illustration of these ideas, we prove a result known to L. E. Dickson
[5, page 23]:

PROPOSITION 5.6. Let K = F, be a finite field with q elements, not of
characteristic 2 or 3. Then the number of GLy(F,)-equivalence classes of
binary cubic forms over ¥, with nonzero discriminant is 3 if ¢ =2 mod 3,
and is 9 if g=1 mod 3.
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Proof. The étale quadratic algebras over F, are
1. C=F;xFgy;

2. C=F,.

If g =2 mod 3q, then C*/(C*)? is trivial in the first case and is Z/3Z
in the second case since g> = 1 mod 3. In the second case the involution
¢ — ¢ fixes the identity element of C*/(C*)* and interchanges the other
two elements, giving 2 orbits on this. This gives 14 2 orbits in total, so
by Proposition 5.5, we have 3 isomorphism classes of binary cubic forms. If
g =1 mod 3, then C* /(C*X)? is Z/3Z xZ/3Z in the first case and is Z/3 in
the second case. In the second case, the Galois involution acts trivially, since
Fy/ (F,”)® = C*/(C*)’. This gives 3 orbits. In the first case, the involution
flips the two factors, and there are clearly 6 orbits. This gives a total of 9
orbits, and hence 9 cubic forms. [

REMARK 5.7. When R =K is a field of characteristic not 2 or 3, one can
give an alternate description of Sg. Since GL, acts threefold transitively on
P!, any binary cubic form with nonzero discriminant is equivalent over the
separable closure of K with @ = xy(x — y). Therefore, by the usual descent
yoga, there is a canonical bijection

(26) Sx ~ HY(K, Aut(®)),

where Aut(®) is the K-group scheme of automorphisms of ®. The structure
of Aut(®) is easily worked out:

Aut(®) = p3 x 53,

where S; is the symmetric group on 3 letters as a trivial Galois module; it
corresponds to the stabilizer in PGL, of the set of zeros of ® in P!.

The signature S3 — p, induces a homomorphism §: Aut(®) — u,, which
in turn induces a map in Galois cohomology

27) 5.: H'(K, Aut(®)) — H'(K, 1) = K> JK**.
Using (4) and the identification (26), we can show that
5.(F) = —3Dp € K*JK*?.

Thus we can interpret the partition (25) as the partition on H!(K, Aut(D)) given

by the fibers of é., the set Cubick(C) corresponding to the fiber §-1(—3D),
where D is the discriminant of C.
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When R is a PID we can give a more precise version of Theorem 5.2. In this
case, C is a free R-module, and since R1 is a direct factor, C = R®ORw = R[w]
1S a monogenic R-algebra. Therefore C* is free of rank one over C (see
Section 7), so the condition 3[M] = [C*] of Theorem 5.2 reads simply
3[M] = 0. Furthermore, since Pic(R) = 0, the exact sequence (13) induces
an isomorphism

(28) G(O)[3] = H(C)[3] = Pic (O)[3]

(note that R™ /n(C™) is an elementary abelian 2-group).

The isomorphism (28) suggests that when R is a PID, it should be possible
to use quadratic forms instead of quadratic mappings and develop a theory for
binary cubic forms that is completely parallel to Eisenstein’s theory over Z.
As we mentioned above, any projective R-module is free, so that a quadratic
form (M, q) is the same thing as a quadratic form classically understood: a
homogeneous polynomial of degree two. If ¢ is of type C then M = R?
becomes an invertible C-module. This C-module is said to be associated to q.

We begin by proving an easy technical lemma.

LEMMA 5.8. Suppose that R is a UFD and let C = R[t]/(t* + bt + ¢).
Let D = b?> —4c and let w be the class of t in C. Set § = b+ 2w (note
that 6* = D) and let € = x+ y§ with x,y € R. If n(€) = 0 (mod 4R), then
¢ =0 (mod 2C).

Proof. Itis enough to prove x = by (mod 2R). Let p € R be an irreducible
element. For z € R — {0} we denote by ord,(z) the largest power of p
occurring in the factorization of z. Set m = ord,(x — by). If m < ord,(2)
then, since ord, is a valuation, ord,(x+ by) = ord,(x — by +2by) = m. Hence
ord,(x* — b*y?*) = 2m < ord,(4), which contradicts our assumption (since
b?> = D (mod 4R)). Therefore ord,(x — by) > ord,(2) for all irreducible p,
which proves the lemma. [

Now we can prove:

PROPOSITION 5.9. Let R be a PID and let F be a cubic form on M = R*
given in the natural basis by (1), with coefficients a; € R. Suppose that its
Eisenstein determining form qr(X) = ax% + bxyxy + cx%, as in (2), is primitive
of discriminant D # 0 and let C = Ct(gr) = R[{] /(z‘2 + bt + ac). Then
3[M,qr] =0 in G(C).

Proof. By the syzygy (7) we have
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4gr(x)qr(y)qr(z) = X* — DY?,
where X and Y are symmetric R-trilinear forms in X,y,z. Applying the lemma
to the rings R’ := R[x1,%2,¥1,¥2,21,22] and C' := C®r R’ with £ =X+ oY
(with & as in the lemma; the lemma applies since R, hence R’, is a UFD),
we have

(29) qr(X)qr(y)qr(z) = n(T),

where T = £/2 € C', by the lemma. Note that T is symmetric trilinear in
X, Y,z ; hence the identity (29) shows that the triplication of gr is the trivial
form, as desired. [

The results below were essentially known in the case R = Z to Eisenstein
[6] and [7], Arndt [1], Pepin [13], Cayley [3] and Hermite [8].

THEOREM 5.10. Let R be a PID. Let q = ax? + bxjx, + cx5 be a
primitive binary quadratic form over R of discriminant D = b* — 4ac # 0.
Let C = C*(q) be the even Clifford algebra of q and let M := R* be endowed
with the natural C-module structure. Let T € C be such that T +7 =0 and
72 = D. With this notation we have

(1) There exists a Gaussian binary cubic form F such that qr = q (where
qr is given by (2)) if and only if 3[M,q} = 0 in the group G(C) of
C-isomorphism classes of quadratic forms of type C.

(i) If F and F' are Gaussian binary cubic forms with qr = qp = q,
then there exists a unit ¢ = a + bt € C* with n(c) = 1 such that
F' = ¢F = aF + bGpg, where G is the cubic covariant defined in (5).

(iii) Let two cubic forms F and F' with qr = qr = q be given. The
following conditions are equivalent :
(a) There exists d € C* with n(d) = 1 such that F' = d°F.
(b) There exists d € C* such that F' = d°F.
(¢) F and F' are SL,(R)-equivalent.

Proof. (1) By Proposition 5.9 the condition 3[M, g] = 0 is necessary. We
shall see that it is sufficient. Suppose 3[M,g] =0 in G(C); in particular

3[M] = 0 € Pic (C),

thus by virtue of Theorem 5.2, Part (i), there exists a Gaussian cubic form F
such that [M, gr,R] = [M, q,R] in H(C). By Proposition 5.9, the class M, gr]
is in G(C)[3]; hence, by the isomorphism (28), we conclude [M, qr] = [M, q]
in G(C).
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(i1) Suppose that gr = gpr = q. CQ®K is an étale K-algebra since D # 0.
Hence by Corollary 4.7 both F and F’ are C-forms and by Theorem 5.2,
Part (i), there exists ¢ € C* such that F' = ¢F = (p(c)/3)F (in the notation
of (23)). Writing ¢ = a+ bt we get F/ = aF + (b/3)(p(7)F). By (24) we
have p(7)F = 3Gy (changing the sign of 7 if needed) and direct computation
shows gr = n(c)gr. Thus n(c) = 1 as required. Note that in general, the
coefficients a,b will have a 2 in the denominator since 7 = b + 2w for a
generator w of the algebra C (see Lemma 5.8).

(1i1) a)=>b) is trivial.

b)=c¢). If F' = &’F with d € C* then, by Part (ii) of Theorem 5.2, F
and F’ are C-equivalent, the isomorphism being x — dx. We have n(d)® =1
by the proof of Part (ii) of this theorem, so replacing d by n(d)d we can
assume n(d) = 1; that is, F and F’ are SL,(R)-equivalent, and this also
establishes the implication b)=>a).

c)=-a). If F/(x) = F(dx), where d € SL,(R), then d is in the orthogonal
group of g = gr = gp. Since det(d) = 1, it is in the special orthogonal
group of this form, hence given by multiplication by an element d € C;* by
Corollary 2.4. But F(dx) = (d’°F)(x). [

COROLLARY 5.11. Now let R = Z, and let D be a nonzero integer
congruent to 0 or 1 modulo 4. Let F be an integral Gaussian binary cubic
form with primitive determining form of discriminant D.

(i) Suppose D < —3. If F' is another Gaussian binary cubic form with
gr = qr then F' is SLy(Z)-equivalent to F.

(i1) Suppose D > 0 or D = —3. Then there are exactly three SL,(Z)-
equivalence classes of Gaussian binary cubic forms F’ such that qr = qF.

Proof. We have that CT(qr) = Cp, the unique quadratic Z-algebra of
discriminant D. Note that (CD)f(/(CD)f<3 is trivial when D < —3 and is
cyclic of order 3 when D = —3 or D > 0. The corollary follows immediately
from this and Parts (ii) and (iii) of Theorem 5.10. ]

COROLLARY 5.12. Let D be a nonzero integer congruent to 0 or 1
modulo 4. Let h3(D) be the number of SL,(Z)-equivalence classes if binary
Gaussian cubic forms with primitive determining form of discriminant D.
Then h3(D) = |Pic (Cp)[3]] if D < —3 and h3(D) = 3|Pic (Cp)[3]| if D= -3
or D> 0.
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Proof. Follows immediately from Corollary 5.11, equation (28) and Part
(i) of Theorem 5.10. [

6. COHOMOLOGICAL INTERPRETATION

Let G, be the multiplicative group regarded as an affine group scheme
over X := Spec C and let u3 C G,, be the kernel of multiplication by 3. All
the cohomology groups below are with respect to the flat topology on X.

THEOREM 6.1. Suppose [C*] is divisible by 3 in Pic(C). Then the group
Hfli(X, us) acts simply transitively on the set 8(C) of C-equivalence classes
of cubic C-forms with primitive determining mapping.

Proof. Recall that the group H}(X, p3) can be interpreted concretely as the
set of isomorphism classes of pairs (L, ), where L is an invertible C-module
and where ¢: L& — C is an isomorphism (see Milne [14, Chap. III, §4]).
Let [L,%] be an element of H}(X, n3) and let (M, F) be a cubic C-form. By
Theorem 5.1, Part (i), we can assume F = Fy, where ¢: M® — C* is an
isomorphism. We define an action of Hi(X,u3) on-8(C) by

(30) (L, 9] [M,Fy] =[LOM, Fyggel,

noting that
Lom® =12 euM®B S cecr =

1s an isomorphism. Let us show first that this action is simple. Suppose
LM, Fygs] = [M,Fg]. Then, L =2 C. Choosing an isomorphism L — C,
we have (x ® y ® z) = uxyz, where u € C*. Hence [M,F;) = [M, Fusl,
and by Part (iii) of Theorem 5.1 we conclude that u = ¢ for some ¢ € CX.
But then c¢: C — C provides an isomorphism of (C,%) with (C,1), thus
[L,¥] = [C, 1].

We show now that the action is transitive. Let [M;,Fs] (i =1,2) be
elements of S(C). Let M3 = Homc(M, C) and let ¢35 : (C*)* — (MS?)®
be the dual of ¢,. Let L =M; ® M5 and let ¢ = ¢; ® ¢§*1. One verifies

immediately that [L, ] - [M3, Fy,]1 = [My, Fy4,], which proves that the action
is transitive. [
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