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ARITHMETIC OF BINARY CUBIC FORMS 77
4. A LIE ALGEBRA REPRESENTATION

Let M be a projective R-module of rank two. Let G = Autg(M) and let
g = Endgr(M) viewed as a Lie algebra over R.
The group G acts on the right on Sym ,(M*) by algebra automorphisms
via
(Fo)(x) = F(ox)
for F € Symgx(M*) and o € G. Taking the formal derivative at the origin of

the associated map
G — Autg_g(Sym g(M™))

we get a representation of Lie algebras
(22) p: g — Derg(Sym x(M™)).

The action of G preserves the homogeneous components Sym (M*) and also
the submodule S*(M*) of Gaussian forms. The same is true for the Lie algebra
action of g.

We shall compute the action of g on S*(M™) explicitly:

LEMMA 4.1. Let F € S"(M*) and let T be the associated n-linear form.
Then

p(g)(F)(X> - i’lT(gX,X, 2 = ,X)
for all g € g.

Proof. To compute the derivative of G — Autg(S"(M*)), we extend the
scalars to the “dual numbers” R[e]/ (e?). Using the symmetry of T we have

F((1 + ge)x) = F(x) + nT(gx,X,...,X)€,

which proves our assertion. [

Let C/R be a quadratic algebra in the sense of Section 2 and let M be
an invertible C-module. Then we have a natural map C — Endgz(M) and we
can restrict the representation p to C. Note that when R is a field and C

is an étale quadratic algebra then the image of C is a Cartan subalgebra b
of g.

Comparing (22) with equation (21), we see that the C-module structure
on S&(M*) is related to the Lie algebra action by

(23) cF = 3p(c)F.

We will make this explicit in a special case that we need:
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LEMMA 4.2. Let F € S*(M*) be a binary cubic form over a field K of
characteristic not 2 or 3. Let qr be its determining form, and C = C*(qr)
its even Clifford algebra. Let x;1, x, be coordinates on the vector space M
with respect to a basis mi,m,. Let

T =mm; —mym; € C=Ct(gr).

Note that 7> = D is the discriminant of qr. Then
6qp 0 86]1? 0
8)62 6x1 5)61 sz ’

p(T) =
acting on forms of any degree.

Proof. As we have seen,
qr(xjm; + x,my) = Px% + Ox1xy + Rx% ,
where P = a? — qpay, Q = aja; — apas, and R = a% — aja;. By direct
computation in the Clifford algebra C, we see that
™m; = Om; — 2Pm,
Tm, = 2Rm; — Om, .

Since p(c) is a derivation of Sym x(M™*), we have

9, 0
p(c) = P(C)(xl)a—xl -+ P(C)(xz)'é;; ,

Thus 7(x;ym; + x,my) = (Ox; + 2Rx)my; — (2Px; + Ox;)m,, which gives
p(T)(x1) = Oqr/Ox; and p(T)(xz) = —0qp/Ox;. [

COROLLARY 4.3. p(7)gr =0 and
8F/6x1 (9F/8x2
F =
(24) p(T) 5‘qp/3x1 (9qp/8x2
- 3GF 3

where Gr is as in (5).

REMARK 4.4. If we further assume that C 1is an étale algebra, then as we
have remarked, p maps C onto a Cartan subalgebra of Endgx(M) ~ gl(2, K).
This algebra decomposes as

he =3 @ be
where the first factor is the center, consisting of scalar matrices, and the second
factor is the intersection hc M sl(2, K), consisting of matrices of trace 0. As

the formulas in the proof of the preceding lemma show that 7 acts on M
with trace 0, we see that h,. = K7.
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THEOREM 4.5. Let C/R be a quadratic algebra such that CQK is étale
over K. Let M be a projective rank-one C-module and let F € S>(M*) be
such that the determining mapping qr is not 0. Then the following conditions
are equivalent :

(a) F is a C-form
(b) (M,qr, D)) is of type C
(c) p(c)p(©)F =9n(c)F for all c € C.
Proof. (a)=>(b). If T is the trilinear form attached to F, then, using the
symmetry of T(cX,y,z), we have
qr(cX) = A2 T(cx, —, —)
= N2 (T(x,c—, —))
= n(c) N* (T(x,—, —))
= n(c)gr(x) ,
which proves the claim. In fact, this implication does not depend on C ® K

being étale.

It is enough to prove the theorem for the case where R = K is a separably
closed field. We can assume in this case C = K[o] with o satisfying or=1.
We will make these assumptions for the rest of the proof.

(b)=>(c). Let {m;,my} be a basis of M over K with om; = m; and
om, = —m,. With respect to this basis, the form gr, being of type C, must
have the shape

qF(X) = oxyxp,

where o # 0. To see that this is so, note that because gr is of type C, we

have gr(om;) = n(o)gr(m;) = —gp(m;), which shows that gp(m;) = O.
One sees similarly that gr(m;) = 0. Then the coefficients of F(x) =
aox? - 3a1x%x2 + 3a2x1x% + a3x§ satisfy the relations: a% — apay, = 0,

aja; —apas = @ and a5 —ajaz = 0. Since « # 0, it follows at once that
ay =a; =0, so F is of the form F(x) = Ax; + px3. Since gr # O (in fact
nondegenerate under the étaleness hypothesis), the algebra C can be identified
with the even Clifford algebra C*(M,qr, D(M)) by Proposition 2.8. Under
that identification we have 7 = o, where 7 is defined as in Lemma 4.2. From
that lemma we get p(0) = x;0/0x; — x,0/0x,, which can be seen directly,
since both sides agree on x;, x,. Hence p(a)(xi’“ix"z) = @3- 2i)xi’—ixé. In
particular, for F(x) = Ax} + px3 we have

p(0)p(F)F = —p(0)*F = —9F = 9n(0)F .
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The more general identity p(c)p(c)F = 9n(c)F for ¢ € C follows from this
particular case by noting that, from Lemma 4.1, p(1)F = 3F.

(c)=>(a). Suppose that p(¢)*F = 9F. Then F must have the form F =
Ax3 + px3 . This is because, as we saw in the discussion above, the monomials
x?"ixé are eigenvectors for the operator p(o)? with eigenvalue (3 —2i)?, which
equals 9 only for i = 0 and i = 3. Hence the associated trilinear form is
T(x,y,2z) = Axyi1z1 + pxoyaz2. Thus T(oX,y,z) = Axy1z1 — pxzy222, which

is visibly symmetric in x,y,z. [

REMARK 4.6. It is interesting to notice that the syzygy (6) can be
recovered from Part (c) of Theorem 4.5. Assume for simplicity that R = K
is a field and C is an étale K-algebra. Let {m;,m,} be a basis of
M. let 7 = mm, —mmm; € C = CV(gr) as in Lemma 4.2. As
we noted in Remark 4.4, 7 generates the trace O part of the Cartan
subalgebra defined by C. Using the derivation property and Corollary 4.3, we
see p(T)(G% — DF?) = (2/3)(p(T)*F — 9DF)Gr. From the above theorem,
o(T)’F = 9DF, so this is 0. On the other hand, p(t)gr = 0, also by
Corollary 4.3, which implies that p(7)q> = 0. Hence both g3 and G% — DF?
lie in the subspace on weight O (for the action of the Cartan subalgebra
he C sl(2, K)) of SO(M*). As SS(M*) is an irreducible representation of
sl(2, K), this is one-dimensional. Hence g> and G% — DpF? differ by a
constant multiple. A priori, this constant could depend on F (e.g., D). That
this is not so can be seen by noting that both sides are of the same degree
in the coefficients of F.

COROLLARY 4.7. Let M be a projective R-module of rank 2, and let
F e S(M*).
(i) Let C = Ct(M,qr, D(M)) and suppose that C ® K is étale, and that
qr is primitive. Then F is a C-form.
(i) If F is a C-form for a quadratic R-algebra C and (M,qr, D(M)) is
primitive, then C = CT(M, qr, D(M)).

Proof. (i) By Proposition 2.8, (M, qgr, D(M)) is of type C. We conclude
by Theorem 4.5.

(i) If F is a C-form, then by Theorem 4.5, the quadratic mapping
(M, gr, D(M)) is type C. But assuming furthermore that (M, gr, D(M)) is
primitive, we see that C is isomorphic with Ct(M, qr, D(M)) by Proposi-
tion 2.8. [J
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LEMMA 4.8. Suppose that C ® K is étale over K and let (M, F) and
(M',F') be cubic C-forms. Assume that the determining mappings qr,qr’
are nonzero. Then every R-linear isomorphism f: (M, F) — (M',F") is either
C-linear or C-sesquilinear.

Proof. The map f will induce an isomorphism of determining quadratic
mappings of type C. We conclude by Proposition 2.3. [

5. STRUCTURE OF THE CUBIC C-FORMS

We shall describe below the C-module structure of S3C(M *) and the
corresponding C-isomorphism classes.

THEOREM 5.1. Let M be a rank-one projective C-module. For each
¢ € Homc(M23,C*) we define a cubic form by Fy(x) = ¢(x ® x ® x)(1).
Then

(i) The correspondence ¢ +— Fg is an isomorphism of C-modules
Homc(ME?, C*) — SL(M™).

(i) The determining mapping qr, is primitive if and only if ¢ is an
isomorphism.

(i) Two cubic C-forms F and Fy on M are equivalent over C if and only
if there exists ¢ € C* such that F; = >F.

Proof. (i) This is a restatement of Proposition 3.7. The map ¢ — Fy is
a C-isomorphism by definition of the structure of C-module on S3(M*) in
Section 3.

(1) It is enough to prove our assertion locally, so we assume that M is
free over C. Write M = Cm for some m € M. Let A = ¢(m@m®m). Then
we have ¢(xm @ ym ® zm) = A(xyz). Let S(ym,zm) = A(yz) and observe that
A is a basis of C* over C if and only if the symmetric bilinear form (3 is
unimodular. We have

gr,(xm) = n(x)qr, (m)
= n(x) \* B.

It follows from this equality that gr, is primitive if and only if 8 is unimodular,
that is, if and only if ¢ is an isomorphism.
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