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ARITHMETIC OF BINARY CUBIC FORMS 65

A final remark: Gauss’ theory of binary quadratic forms led to two major
developments : the theory of number fields on the one hand, and the theory
of quadratic forms in more than two variables on the other. The arithmetic
of forms of higher degree over Z seems to have been largely neglected. In
modern times Shintani revived interest in the arithmetic of cubic forms by
introducing a family of Dirichlet series that depend on class numbers of cubic
forms, and have good analytic properties (analytic continuation and functional
equations). This work has been reinterpreted in the language of adeles by
Wright [16]. For a general introduction to arithmetic problems concerning
forms of higher degree, see [9].

We would like to thank J. Hurrelbrink and S. Weintraub for helpful
discussions concerning this work.
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2. BINARY QUADRATIC MAPPINGS

We shall assume throughout this section that the ground ring R is an integral
domain of characteristic not 2. The fraction field of R will be denoted by K.

A binary quadratic form is a pair (M,q) such that M is a projective
R-module of rank two and g: M — R is a mapping such that g(ax) = a?q(x),
a€c€ R, x &€ M, and such that b(x,y) := gX +y) — g(x) — g(x) is R-bilinear.
The form q is said to be primitive if the ideal generated by q(M) is R.
A mo/rphism (M,q) — (M',q") is an R-linear mapping f: M — M’ such that
g=¢q of.If M =R? is the free module, we will often omit reference to M.
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Let C be a quadratic R-algebra in the sense of [11], that is, an R-algebra,
which as an R-module is projective of rank two, and such that R1 C C is a
direct factor of C as R-modules. Locally over Spec R, such an algebra C is
isomorphic with an algebra of the form

R[#]/(t* + bt + ©), (b,c €R).

Let n: C = R and t: C — R be the norm and the trace maps of C. It
is easy to see that C possesses a unique nontrivial R-automorphism x — X
satisfying #(x) =x+X and n(x) = xx.

When R = Z, for each nonzero integer D = 0 or 1 (mod 4), we shall
denote by Cp the unique quadratic Z-algebra of discriminant D.

The notion of a form of type C was introduced by Kneser [11] and will
play an important role in this paper.

DEFINITION 2.1. Let M be a projective C-module of rank 1. We say that
a quadratic form g: M — R is of type C if it satisfies

(®) g(cx) = n(c)q(x)

forall x e M, c € C. A C-morphism (M, q) — (M’,q’) is a C-linear mapping
f: M — M' such that g=¢q' of.

Recall that the Clifford algebra C(M, g) is the quotient of the tensor algebra
Tr(M) by the ideal generated by x®x—g(x)1 for all x € M. The even Clifford
algebra, Ct(M, q), is the subalgebra generated by tensors of even degree, and
is easily seen to be a quadratic R-algebra. Also, M is identified with the odd
part of the Clifford algebra (i.e., generated by tensors of odd degree), and
the map CT(M,q) x M — M induced by multiplication in C(M,q) makes
M into a CT(M, g)-module. The formation of the Clifford algebra commutes
with localization on SpecR.

In the special case when M = R* we can describe C*(M,q) explicitly:
Let {e;, e;} be a basis of R? relative to which g = ax} + bxix; + cx3.
Then €2 =a, €2 =c, eje; +eze; = b in the Clifford algebra of g. Thus if
w = —eje; we have

CT(g) = Rlw] = R[x]}/(x* + bx + ac) .
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PROPOSITION 2.2 ([11, Proposition 1}).

1. Let (M,q) be a primitive quadratic form and C = Ct(M,q) its even
Clifford algebra. Then M becomes a projective C-module of rank one, and
(M, q) is a quadratic form of type C.

2. Let C be a quadratic R-algebra and (M,q) be a nonzero quadratic
form of type C. Then there exists a unique homomorphism of R-algebras

¢: CT(M,q) — C

satisfying ¢(w)Xx = ux for u € Ct(M,q) and x € M. Furthermore, ¢ is an
isomorphism if and only if q is primitive.

If g is a binary form over Z of discriminant D, then C*(M,q) is the
unique quadratic algebra Cp over Z of discriminant D. If moreover g is
primitive, then g is of type Cp. Thus all the primitive forms of discriminant
D are of type Cp.

Kneser showed [11, Theorem 3] that the set G(C) of primitive binary
forms of type C modulo C-isomorphism forms a group for composition,
which generalizes Gauss’ theory for binary quadratic forms over Z. The
group law on G(C) is explicitly given as follows: The composition of (M, q)
and (M',q") is the form (M ®c M, q"), where ¢"(x ® y) = q(x)q'(y). The
neutral element is clearly (C,n).

The relation between C-isomorphism and R-isomorphism of quadratic forms
is explained by the following proposition. Recall that an algebra over a field
is étale if it is a product of separable extension fields of that field.

PROPOSITION 2.3. Let C be a quadratic R-algebra, and suppose that
C®K is an étale K-algebra. Let (M,q) and (M',q’) be nonzero quadratic
forms of type C. Then every R-isomorphism f: (M,q) — (M',q") is either
C-linear or C-sesquilinear.

Proof. By extending scalars to K, it will suffice to prove our proposition
for the case when R = K. The map f will induce an isomorphism of the
even Clifford algebras CT(M, q) — CT(M’,g). These algebras are canonically
1isomorphic with C by Proposition 2.2, and hence f induces an automorphism
f« of the K-algebra C satisfying f(cx) = fi(c)f(x). By hypothesis C is an
etale algebra over K, so its only K-automorphisms are the identity and the

canonical conjugation. Thus fi(c) is either ¢ or ¢ for all ¢ € C, which
completes the proof. [
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Note that the proposition is false if C ® K is not étale, as can be easily
seen by taking C = R[¢]/(t*) with the norm form.

Let (M, q) be a nonzero binary quadratic form over R. Suppose that it is
of type C, and let C; be the subgroup of the units of C with n(c) = 1.
Then we obtain a natural homomorphism (/. = multiplication by ¢ in M):

C; — SOWM, q)

cr— 1,

©)

where SO(M, q) C Autg(M) is the subgroup of R-automorphisms fixing g
and having determinant 1.

COROLLARY 2.4. With the above hypotheses, and assuming that C @ K
is an étale K-algebra, the map (9) is an isomorphism.

Proof. Since M is projective of rank one over C, the map ¢ — [, is an
isomorphism C =~ End¢(M) ; thus it is enough to show that the elements of
SO(M, g) are C-linear.

Let f € SO(M, g). It is sufficient to show the C-linearity of f locally; so
we may assume M = C and g = an with a € C*.

The canonical conjugation o of C preserves g and has determinant —1.
Suppose now that f is C-sesquilinear. Then fo is C-linear, i.e. fo = [, for
some ¢ € C* which must satisfy n(c) = det(l.) = 1, since [, preserves q.
Thus det(f) = —1, contrary to our hypothesis. Hence, by Proposition 2.3, the
map f must be C-linear.  []

To define an analogue of Eisenstein’s determining form (2) for general
rings, we shall need the more general notion of binary quadratic mapping.

A binary-quadratic mapping over R is a triple (M,q,N) where M is
a projective R-module of rank two, N is a projective R-module of rank
one and g: M — N is a map such that g(ax) = a?q(x) and b(x,y) =
qg(x +y) — g(x) — g(y) is R-bilinear.

A morphism (M,q,N) — (M',q',N’) is a pair (f,g) of R-linear maps

fM—-M and g:N— N’

such that g'f = gq. We say that (M, q,N) is primitive if Rg(M) = N.If N is
free over R, then choosing a basis n of N we can write g(x) = Q(x)n. Then
(M, Q) is a quadratic form in the previous sense. Note however that in this
case (M, q,N) is isomorphic to (M’,q’,N’) as quadratic mappings if and only
if there exists a unit u € R* such that (M, Q) ~ (M’, uQ’) as quadratic forms.
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Hence we can think of a quadratic mapping over R as defining a family of
quadratic forms up to similarity equivalence, locally on a covering of SpecR,
and glued together in an obvious sense.

In the case R = Z every projective module is free, so that a quadratic
mapping in this case is the same thing as a quadratic form, but up to similarity
equivalence as above. This differs therefore from the usual theory, based
on SL,(Z)-equivalence, but this difference is easily accounted for (see the
discussion for PIDs in Section 5).

Let C be a quadratic algebra and assume that M is a projective C-module
of rank 1. A quadratic mapping (M,q,N) is of type C if g satisfies the
identity (8).

In order to have an analogue of Proposition 2.2 we need a definition of
the even Clifford algebra in the context of quadratic mappings. The (total)
Clifford algebra of a quadratic mapping (as opposed to a quadratic form)
cannot be defined. The reason is that the Clifford algebra is not a functor for
similarities of quadratic forms. As Kneser observed, the even Clifford algebra
is a functor for similarities of quadratic forms. We can define directly the
even Clifford algebra for quadratic mappings as follows:

DEFINITION 2.5. Let (M, q,N) be a quadratic mapping. The even Clifford
algebra C*T(M,q,N) is the quotient of the tensor algebra
TRIN* @M @ M),
where N* = Homg(N,R), by the ideal generated by

A®X QX — A(g(x))
ARXxRY)Qu®Y®Z)—Ag(y) t xRz

(A, u €N*, x,y,2€ M).

(10)

One verifies easily that the above definition depends‘ only on the isomor-
phism class of (M, g, N). For a similar construction, see [10, Ch. II, Section 8].
Note that the second defining relation can also be written as

ARXQY)@UBY®RZ) — ugy) \@x®z.

This is because A\(u)u(v) = A(v)u(u) on N since the difference is an alternating
bilinear form, which must vanish since N has rank 1. We also need to define
a C*(M,q,N)-module structure on M ; this is not completely obvious since
the total Clifford algebra is no longer available. We begin with a lemma:
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LEMMA 2.6. Let Q be a quadratic form on M and let B be the associated
bilinear form. Then

B(x,y)z — B(z,x)y + B(y,z)x = 0 (mod 2M)
for all x,y,ze M.

Proof. Let C be the Clifford algebra of Q. The expression
(11) > sign(0)Xp1X02%03
g

where o runs over all permutations of {1,2,3}, defines an alternating
R-trilinear map M3?® — C. Since M has rank 2 over R, we have A°M =0,
thus the expression (11) is identically zero. The lemma follows from the
identity x;X; + X;X; = B(X;,X;) in the Clifford algebra. [

We can now define a CT(M, g, N)-module structure on M as follows:
(12) A®x®Y) - 2= 5[AbX, )z — Ab(z,X))y + Mb(y,2))X] .

Note that dividing by 2 in (12) makes sense in M by virtue of Lemma 2.6
applied to Q = Aog, B = Aob, and the fact that R is an integral domain
of characteristic not 2. To see that this is a well-defined module we need:

LEMMA 2.7. The definition (12) is compatible with the defining relations
(10) for CT(M,q,N).

Proof. This is straightforward for the first relation. For the second relation
of (10), we can, without loss of generality, extend scalars from R to its fraction
field K. We prove that the second relation vanishes when applied to an element
w € M. If the vectors z and y are linearly dependent, say z = ay for a € K,
then the second relation is a consequence of the first, so we may assume that
z and y are linearly independent. In this case it is enough to consider the
subcases (a) w =y, (b) w =z, since now y, z forms a basis of M. The case
(b) is easily seen by direct computation of both sides. In case (a), applying
A®xRy)®(L®Yy®zZ) to y, we get

L 2ub(y, 2) Ab(y, ¥)x — pb(y, 1)) Mb(X, ¥)) 2
+ u(d(y, y)) Mb(z, X))y — ub(y, y)) Mb(y, 2))X) .

In the last three terms in this formula, we may exchange A and pu, using the
identity A(w)u(v) = A(v)p(u). The expression then reduces to

IXNg) (u(b(x, 2))y — p(b(y, X))z + w(b(z, ¥)) X)
which is exactly the proposed identity. [
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It is important to note that in the case of a quadratic form, as opposed to
1 quadratic mapping, (12) really defines the usual module structure given by
multiplication in the Clifford algebra of the form. Namely, the expression in
(12) equals x ® y ® z in that algebra. We leave this verification to the reader
(hint: use (11) and the fact that x@y®z =2z ®y ®x in the Clifford algebra
of a binary quadratic form).

Locally on Spec(R), where both M and N are free, the choice of
trivializations of these modules reduces a quadratic mapping to a quadratic
form well-defined up to scalar multiples by a local unit. The even Clifford
algebra as we have defined it is isomorphic on this open set to the Clifford
algebra of this quadratic form, and the module structure as we have defined
it coincides with the module structure given by multiplication in the Clifford
algebra of the locally defined form. In fact, we can define the even Clifford
algebra and the module structure by taking these locally defined objects and
gluing them together, which provides an alternative construction.

Here is the analogue of Proposition 2.2 for quadratic mappings :

PROPOSITION 2.8.
1. If (M,q,N) is primitive, then M is a projective C = Ct(M,q,N)-
module of rank one and q is of type C.

2. Let (M,q,N) be a nonzero quadratic mapping of type C, and
let CY(M,q,N) be its even Clifford algebra. Then there exists a unique
homomorphism of R-algebras ¢: C*(M,q,N) — C satisfying ¢(u)x = ux for
ue Ct(M,q,N) and x € M. Furthermore, ¢ is an isomorphism if and only
if q is primitive.

We shall omit the proof, since it is essentially rephrasing the proof given
in [11, Proposition 1].

REMARK 2.9. Proposition 2.3 also holds for quadratic méppings. This can
be easily seen by extending the scalars to K.

M. Kneser [11, Section 6] shows that the set H (C) of isomorphism classes
of primitive binary quadratic mappings (M, g, N) of type C forms a group for
composition, the neutral element being (C,n,R). Note that the equivalence
relation here is C-equivalence: an isomorphism is a pair (f,g) as before, but
with f a C-linear isomorphism. He also showed that H(C) is isomorphic to
the group Pic(C) via the canonical map (M, g, N) — M.
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We compare the group G(C) of C-isomorphism classes of primitive
quadratic forms of type C and the group H(C) above by means of the
canonical group homomorphism G(C) — H(C) induced by the correspondence
M,q) — (M,q,R). M. Kneser (op. cit.) showed that this map fits into an
exact sequence

(13) 0 — R* /n(C*) — G(C) — H(C) - Pic(R).

In the classical case of a quadratic Z-algebra C of discriminant D, the
sequence (13) was essentially known to Dedekind. Since Pic(Z) = O and
Z* = {x1}, the sequence (13) shows that the group G(C) is the narrow
class group of C if D >0, and it is {£1}x the class group of C if D <0
(the sign corresponding to positive and negative definite forms). In either case,
it differs from the ideal class group Pic(C) at most by a cyclic factor of
order 2.

It is worth noticing that the exact sequence above has a natural interpretation
in flat cohomology. Let 7: Spec C — Spec R be the natural morphism. Let
G = Aute(C,n) and H = Autc(C,n,R) as group schemes over Spec R. One
sees immediately that H = m.G,, where G, is the multiplicative group
scheme, and that G is the kernel of the norm map n: 7.G,, — G,,. From
the short exact sequence of group schemes over Spec R

0— G H— G, — 0,
we obtain the long exact sequence (see [14, Chap. III, §4])
0 — R*/n(C*) — H(SpecR,G) — Hi(SpecR, H) 5 Hy(Spec R, G),

where the flat topology is understood. The group G(C) [respectively H(C)] can
be identified with H}(SpecR,§) [respectively Hg(Spec R, H)] by interpreting
quadratic forms [respectively quadratic mappings] as torsors for G [respectively
H] in the flat topology.

Note that there is a natural isomorphism

H}(Spec R, 7, Gp) = Hy(Spec C, Gy ,

so we also have H(C) = Pic(C) (compare [11, Proposition 2]).
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