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ARITHMETIC OF BINARY CUBIC FORMS

by J. William HOFFMAN and Jorge MORALES

ABSTRACT. This paper explores a connection between the theory of binary cubic
forms and binary quadratic forms that was first discovered for forms over Z by
Eisenstein. We generalize Eisenstein’s theory to cubic forms over an arbitrary integral
domain of characteristic not 2 or 3 using Kneser’s Clifford algebra interpretation of
the composition of quadratic forms.

1. INTRODUCTION

An important problem of number theory is the classification of binary
n-forms

F(x) = apx] + alx'f_lxz s bR o an—lxlxg—l + a.x, ,

where the coefficients a; are integers, up to SL,(Z)-equivalence.

In Disquisitiones Arithmetice Gauss presented a systematic theory for
n = 2, based in part on earlier researches of Fermat, Euler, Lagrange
and Legendre. Recall that a composition of two binary quadratic forms
g and g’ is a quadratic form ¢” such that there exists a bilinear map
B: 77 x 7* — 77 with the property g"(B(X,y)) = g(x)q’(y). One of the most
remarkable discoveries of Gauss is that the set of SL,(Z)-equivalence classes
of binary primitive quadratic forms of given discriminant D is a finite abelian
group with respect to composition of quadratic forms. This group was later

interpreted by Dedekind in terms of ideal class groups.
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F. G. Eisenstein in his first paper [6] showed a remarkable connection
between the theory of binary cubic forms (r = 3) and the theory of binary
quadratic forms (n = 2). This connection is as follows:

To every binary cubic form of the type

(D F(x) = aox? ~+ 3a1x%x2 -+ 3a2x1x% + agx% (a; € 1)),
Eisenstein associates a quadratic form

(2) gr(x) = Ax} + Bxyx, + Cx3

where A = a} — apaz, B = ajay — apas and C = a% — ajaz. Eisenstein [7]

calls gr the determining form of F (‘determinierende Form’). He shows that
the correspondence F — gr commutes with the natural action of the group
SL,(Z) by linear substitution and therefore takes classes of cubic forms to
classes of quadratic forms. Notice that gr is essentially the Hessian of F.

It is natural to fix a nonzero integer D = 0 or 1 mod 4 and ask for
all cubic forms F such that gr has discriminant D, in other words, for all
solutions of the quartic equation (hence the title of the paper [6])

D = a3a% — 3ata; + 4apa; + 4aias — 6agaiazas

3
) = B?> — 4AC

in integers ag,aj,ap,as. Note that the discriminant D of g is related to the
discriminant 6(F) of F (as in [12, Chap. V, §9]) by

4) §(F) = —27D.

Eisenstein observes that from one solution of (3) one can obtain infinitely
many solutions by taking its translations under the action of SL,(Z). The
orbits of this action are the essentially different solutions to (3).

He states without proof in [6] that if D = 4d with d square-free, and g(x)
is a primitive quadratic form of discriminant D, then there exists a cubic form
F as in (2) such that gr = g if and only if “the triplication of g(x) gives the
principal class”, that is, if and only if g(x) is an element of 3-torsion in the
class group of binary quadratic forms of discriminant D. He also asserts that
when ¢(x) is an element of 3-torsion, there is only one class of cubic forms
F with qr = q. The latter assertion turned out not to be completely correct as
stated when D > 0, for in this case there are in fact three nonequivalent cubic
forms F with gr = g (see Example 7.2). This was noticed by Arndt [1],
Pepin [13], Cayley [3] and Hermite [8].

In a second paper [7], Eisenstein proves his assertions for the case when
D = —4p, where p a positive prime congruent to 3 mod 4. A key point in
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Eisenstein’s proofs of these results is a syzygy that he found connecting the
fundamental covariants of a binary cubic form F. Let

1| 0F/0x, OF/0x,
(5) GF(X)—E 8qp/6x1 8qp/8x2 ‘

One has the polynomial identity (essentially in [7, §5]) relating F, gr and Gr :
(6) 49r(x)’ = Gr(x)* ~ DF(x)" ,

where D is the discriminant of gp. It is worth noting that the graded ring of
covariants of binary cubic forms (over a field of characteristic 0) is generated
by F, gr, D, Gr and that (6) generates the ideal of relations among these
(cf. [15, 3.4.3]).

Let Tr and Tg, be the symmetric trilinear forms such that
Tr(x,X,X) = F(x) and T (X,X,X) = Gr(X)

(note that the middle coefficients of F and Gr are divisible by 3). One verifies
the identity, equivalent to (6),

(7) 4qr(X)qr(yY)qr(@) = Tsp(x,y,2)* — DTr(x,y,2)".

Suppose now that gr is primitive (i.e., the GCD of its coefficients is 1).
Assume also that D = 4d for an integer d # 0. Since the form X? — dY? is
the unit element in the group of primitive quadratic forms of discriminant D,
the identity (7) shows that gz is an element of 3-torsion for composition of
quadratic forms. To see this it is enough to divide by 4 throughout in (7),
observing that T, will have integer coefficients, all divisible by 2 since D
is a multiple of 4. A similar argument can be given when D = 1 (mod 4) (or
see Proposition 5.9 for a general statement).

In this paper, we generalize Eisenstein’s theory to cubic forms over any
integral domain R of characteristic not 2 or 3. In order to extend Eisenstein’s
determining form (2) to the case of projective, not necessarily free, R-modules
we need to allow quadratic forms with values in arbitrary projective R-modules
of rank one. Thus Kneser’s theory of binary quadratic mappings [11] provides
the appropriate setting.

In Section 2 we explain Kneser’s Clifford algebra description of the
composition law for binary quadratic forms and mappings. We restate some
of his results and give a natural interpretation in flat cohomology of his

exact sequence relating the class groups of binary quadratic forms and binary
quadratic mappings.
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In Section 3 we generalize Eisenstein’s notion of determining form to any
integral domain R of characteristic not 2 or 3 and introduce the concept of
a cubic C-form that plays a central role in the rest of the paper.

In Section 4 we use a natural Lie algebra representation to characterize
the cubic C-forms (Theorem 4.5). This allows us to use the formalism of
derivations.

In Section 5 we give necessary and sufficient conditions on a module M to
admit cubic C-forms F with primitive determining mapping and we classify
these forms (Theorem 5.1 and Theorem 5.2). These results are roughly the
analogues of Eisenstein’s theorems. We also discuss the relation between the
notions of C-equivalence and ordinary (R-) equivalence and give an application
to counting cubic forms over finite fields.

In the special case where R is a PID, we obtain a statement (Theorem 5.10)
that closely parallels Eisenstein’s theory. These results were known, modulo
language, to Eisenstein [6] and [7], Arndt [1], Pepin [13], Cayley [3] and
Hermite [8] in the case where R = Z. The more specific classical results over
Z. concerning class numbers are deduced in Corollaries 5.11 and 5.12.

The main result for PID’s (Theorem 5.10) can be summarized as follows:
Let ¢ = ax?+bxyxp+cx3 be a primitive quadratic form with D = b*—4ac # 0.
Let C = C*(q) be the even Clifford algebra of g and let 7 € C be such
that 72 = D. Then there ‘exists a cubic form F(x) in the shape of (1), with
a; € R such that gr = g (gr as in (2)) if and only if the triplication of
g in the sense of composition is trivial. Furthermore, when this condition is
satisfied, the cubic forms in the fiber of the map F +— gr above g can be
written uniquely as F' = aF + bGp, where F is a fixed form with gr = g,
the form Gf is the cubic covariant defined in (5), and the coefficients a and
b are in the field of fractions of R and are such that a + b7 is a unit of C
satisfying!) a? —Db? = 1. The SL,(R) -equivalence class of F’ is determined
uniquely by the class of a + b7 in C*/C x3

In Section 6, we show that the flat cohomology group H(Spec C,pus) acts
simply transitively on the set of isomorphism classes of cubic C-forms with
primitive determining mapping (Theorem 6.1). We also show that the main
classification theorem of Section 5 can be interpreted in terms of a Kummer
exact sequence in flat cohomology.

In Section 7 we show how to represent C-forms as scaled cubic trace
forms and give applications to explicit computations over Z.

1) In fact, defining F' = aF + bGp for arbitrary a and b, one has the identity
qp = (a® — Db?) g, which was apparently discovered by Hermite (see his letter to Cayley, [8])

4
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A final remark: Gauss’ theory of binary quadratic forms led to two major
developments : the theory of number fields on the one hand, and the theory
of quadratic forms in more than two variables on the other. The arithmetic
of forms of higher degree over Z seems to have been largely neglected. In
modern times Shintani revived interest in the arithmetic of cubic forms by
introducing a family of Dirichlet series that depend on class numbers of cubic
forms, and have good analytic properties (analytic continuation and functional
equations). This work has been reinterpreted in the language of adeles by
Wright [16]. For a general introduction to arithmetic problems concerning
forms of higher degree, see [9].

We would like to thank J. Hurrelbrink and S. Weintraub for helpful
discussions concerning this work.
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2. BINARY QUADRATIC MAPPINGS

We shall assume throughout this section that the ground ring R is an integral
domain of characteristic not 2. The fraction field of R will be denoted by K.

A binary quadratic form is a pair (M,q) such that M is a projective
R-module of rank two and g: M — R is a mapping such that g(ax) = a?q(x),
a€c€ R, x &€ M, and such that b(x,y) := gX +y) — g(x) — g(x) is R-bilinear.
The form q is said to be primitive if the ideal generated by q(M) is R.
A mo/rphism (M,q) — (M',q") is an R-linear mapping f: M — M’ such that
g=¢q of.If M =R? is the free module, we will often omit reference to M.
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