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ARITHMETIC OF BINARY CUBIC FORMS

by J. William HOFFMAN and Jorge MORALES

Abstract. This paper explores a connection between the theory of binary cubic

forms and binary quadratic forms that was first discovered for forms over Z by
Eisenstein. We generalize Eisenstein's theory to cubic forms over an arbitrary integral
domain of characteristic not 2 or 3 using Kneser's Clifford algebra interpretation of
the composition of quadratic forms.

1. Introduction

An important problem of number theory is the classification of binary
n-forms

F(x) ao*i + aix"~1X2 H h an-\xix^~l + anx%

where the coefficients at are integers, up to SL2(Z)-equivalence.

In Disquisitiones Arithmetical Gauss presented a systematic theory for
n — 2, based in part on earlier researches of Fermât, Euler, Lagrange
and Legendre. Recall that a composition of two binary quadratic forms

q and q' is a quadratic form q" such that there exists a bilinear map
B : Z2 x Z2 —* Z2 with the property q"(B(x, y)) q(x)qf(y). One of the most
remarkable discoveries of Gauss is that the set of SL2(Z)-equivalence classes

of binary primitive quadratic forms of given discriminant D is a finite abelian

group with respect to composition of quadratic forms. This group was later

interpreted by Dedekind in terms of ideal class groups.
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EG. Eisenstein in his first paper [6] showed a remarkable connection
between the theory of binary cubic forms (n 3) and the theory of binary
quadratic forms (n 2). This connection is as follows :

To every binary cubic form of the type

(1) F(x) a0xl + 3aixjx2 + 3a2xix% + a^x\ (at G Z)

Eisenstein associates a quadratic form

(2) qF(x) — Ax\ + Bxxx2 + Cx%

where A a\ — a^a2, B a\a2 — and C a\ — a\ü3. Eisenstein [7]
calls qF the determining form of F ('determinierende Form '). He shows that
the correspondence F ^ qF commutes with the natural action of the group
SL2(Z) by linear substitution and therefore takes classes of cubic forms to
classes of quadratic forms. Notice that qF is essentially the Hessian of F.

It is natural to fix a nonzero integer D 0 or 1 mod 4 and ask for
all cubic forms F such that qF has discriminant Z), in other words, for all
solutions of the quartic equation (hence the title of the paper [6])

0 0 0 0 Q o
D a0a3 — 3axa2 + 4-aoa2 + 40^3 — 6aoa\a2as

(3)
B2 —4AC

in integers öo5 ^2, a3. Note that the discriminant D of qF is related to the

discriminant 6(F) of F (as in [12, Chap. V, §9]) by

(4) 6(F) -27D.

Eisenstein observes that from one solution of (3) one can obtain infinitely
many solutions by taking its translations under the action of SL.2(Z). The

orbits of this action are the essentially different solutions to (3).
He states without proof in [6] that if D 4d with d square-free, and q(x)

is a primitive quadratic form of discriminant Z), then there exists a cubic form
F as in (2) such that qF — q if and only if "the triplication of q(x) gives the

principal class", that is, if and only if g(x) is an element of 3-torsion in the

class group of binary quadratic forms of discriminant D. He also asserts that

when #(x) is an element of 3-torsion, there is only one class of cubic forms

F with qF m q. The latter assertion turned out not to be completely correct as

stated when D > 0, for in this case there are in fact three nonequivalent cubic

forms F with qF q (see Example 7.2). This was noticed by Arndt [1],
Pepin [13], Cay ley [3] and Hermite [8].

In a second paper [7], Eisenstein proves his assertions for the case when

D —4/7, where p a positive prime congruent to 3 mod 4. A key point in
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(5) Gf(x) — j

Eisenstein's proofs of these results is a syzygy that he found connecting the

fundamental covariants of a binary cubic form Let
ÔF/dxi

dqp/dxi dqp/dx2

One has the polynomial identity (essentially in [7, §5]) relating F, qF and Gf '

(6) 4qF(x)3 GF(x)2 - DF(x)2

where D is the discriminant of qF.It is worth noting that the graded ring of
covariants of binary cubic forms (over a field of characteristic 0) is generated

by F, qF, D, GF and that (6) generates the ideal of relations among these

(cf. [15, 3.4.3]).

Let 7> and TGf be the symmetric trilinear forms such that

7>(x, x, x) F(x) and TGf(x, x, x)

(note that the middle coefficients of F and GF are divisible by 3). One verifies

the identity, equivalent to (6),

(7) 4qF(x)qF(y)qF(z)TGf(x,y, z)2 - y, z)2.

Suppose now that qF is primitive (i.e., the GCD of its coefficients is 1).

Assume also that D Ad for an integer d ^ 0. Since the form X2 — dY2 is

the unit element in the group of primitive quadratic forms of discriminant D,
the identity (7) shows that qF is an element of 3-torsion for composition of
quadratic forms. To see this it is enough to divide by 4 throughout in (7),

observing that Tqf will have integer coefficients, all divisible by 2 since D
is a multiple of 4. A similar argument can be given when D 1 (mod 4) (or
see Proposition 5.9 for a general statement).

In this paper, we generalize Eisenstein's theory to cubic forms over any
integral domain R of characteristic not 2 or 3. In order to extend Eisenstein's

determining form (2) to the case of projective, not necessarily free, i?-modules

we need to allow quadratic forms with values in arbitrary projective /^-modules
of rank one. Thus Kneser's theory of binary quadratic mappings [11] provides
the appropriate setting.

In Section 2 we explain Kneser's Clifford algebra description of the

composition law for binary quadratic forms and mappings. We restate some
of his results and give a natural interpretation in flat cohomology of his
exact sequence relating the class groups of binary quadratic forms and binary
quadratic mappings.
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In Section 3 we generalize Eisenstein's notion of determining form to any
integral domain R of characteristic not 2 or 3 and introduce the concept of
a cubic C-form that plays a central role in the rest of the paper.

In Section 4 we use a natural Lie algebra representation to characterize
the cubic C-forms (Theorem 4.5). This allows us to use the formalism of
derivations.

In Section 5 we give necessary and sufficient conditions on a module M to
admit cubic C-forms F with primitive determining mapping and we classify
these forms (Theorem 5.1 and Theorem 5.2). These results are roughly the

analogues of Eisenstein's theorems. We also discuss the relation between the

notions of C-equivalence and ordinary (R-) equivalence and give an application
to counting cubic forms over finite fields.

In the special case where R is a PID, we obtain a statement (Theorem 5.10)
that closely parallels Eisenstein's theory. These results were known, modulo

language, to Eisenstein [6] and [7], Arndt [1], Pepin [13], Cayley [3] and

Hermite [8] in the case where R Z. The more specific classical results over
Z concerning class numbers are deduced in Corollaries 5.11 and 5.12.

The main result for PID's (Theorem 5.10) can be summarized as follows:
Let q ax\-\-bx\X2+cx2 be a primitive quadratic form with D b2—4ac ^ 0.
Let C C+(q) be the even Clifford algebra of q and let r G C be such

that T2 D. Then there exists a cubic form F(x) in the shape of (1), with

al G R such that qF — q (qF as in (2)) if and only if the triplication of
q in the sense of composition is trivial. Furthermore, when this condition is

satisfied, the cubic forms in the fiber of the map F qF above q can be

written uniquely as F' — aF + bGF, where F is a fixed form with qF — q,
the form GF is the cubic covariant defined in (5), and the coefficients a and

b are in the field of fractions of R and are such that a + br is a unit of C

satisfying1) a2 — Db2 1. The SL2OR) -equivalence class of F' is determined

uniquely by the class of a + br in Cx/Cx
In Section 6, we show that the flat cohomology group 7/fl(Spec C, P3) acts

simply transitively on the set of isomorphism classes of cubic C-forms with

primitive determining mapping (Theorem 6.1). We also show that the main
classification theorem of Section 5 can be interpreted in terms of a Kummer

exact sequence in flat cohomology.

In Section 7 we show how to represent C-forms as scaled cubic trace

forms and give applications to explicit computations over Z.

1 In fact, defining F' aF + bGr for arbitrary a and b, one has the identity

qF, (a2 —Db2)qF, which was apparently discovered by Hermite (see his letter to Cayley, [8])
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A final remark: Gauss' theory of binary quadratic forms led to two major

developments: the theory of number fields on the one hand, and the theory
of quadratic forms in more than two variables on the other. The arithmetic

of forms of higher degree over Z seems to have been largely neglected. In
modern times Shintani revived interest in the arithmetic of cubic forms by

introducing a family of Dirichlet series that depend on class numbers of cubic

forms, and have good analytic properties (analytic continuation and functional

equations). This work has been reinterpreted in the language of adèles by

Wright [16]. For a general introduction to arithmetic problems concerning
forms of higher degree, see [9].

We would like to thank J. Hurrelbrink and S. Weintraub for helpful
discussions concerning this work.
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2. Binary quadratic mappings

We shall assume throughout this section that the ground ring R is an integral
domain of characteristic not 2. The fraction field of R will be denoted by K.

A binary quadratic form is a pair (M, q) such that M is a projective
R -module of rank two and q\ M —> R is a mapping such that q(ax) cfiqix),
a e R, x G M, and such that 6(x,y) := q(x + y) - q(x) - ^(x) is R-bilinear.
The form q is said to be primitive if the ideal generated by q(M) is R.
A morphism (M, q) —» (M\q') is an /Minear mapping /: M —> Mf such that
q q' of. If M R2 is the free module, we will often omit reference to M.
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Let C be a quadratic /?-algebra in the sense of [11], that is, an R-algebra,
which as an /^-module is projective of rank two, and such that Rl C C is a

direct factor of C as R-modules. Locally over Spec/?, such an algebra C is

isomorphic with an algebra of the form

R[t)/{t2 + bt +c),Let n: C —> R and t: C —> R be the norm and the trace maps of C. It
is easy to see that C possesses a unique nontrivial /^-automorphism x x
satisfying t(x) x -f x and n(x) =xx.

When R Z, for each nonzero integer D 0 or 1 (mod 4), we shall
denote by Q> the unique quadratic Z-algebra of discriminant D.

The notion of a form of type C was introduced by Kneser [11] and will
play an important role in this paper.

Definition 2.1. Let M be a projective C-module of rank 1. We say that

a quadratic form q: M R is of type C if it satisfies

(8) q(cx) n(c)q(x)

for all x G M, c C. A C-morphism (M, q) —» (M7, qf) is a C-linear mapping

/: M —> M' such that q — qr of.

Recall that the Clifford algebra C(M, q) is the quotient of the tensor algebra

Tr(M) by the ideal generated by x(g)x — q(x)l for all x G M. The even Clifford
algebra, C+(M, <?), is the subalgebra generated by tensors of even degree, and

is easily seen to be a quadratic R-algebra. Also, M is identified with the odd

part of the Clifford algebra (i.e., generated by tensors of odd degree), and

the map C+(M,q) x M —» M induced by multiplication in C(M,q) makes

M into a C+(M, -module. The formation of the Clifford algebra commutes

with localization on Spec R.

In the special case when M R2 we can describe C+(M,q) explicitly:
Let {e\, ef\ be a basis of R2 relative to which q ax\ + fociX2 + cx\.
Then e\ a, e\ c, e^2 + ^2^1 — b in the Clifford algebra of q. Thus if
to — —e\e2 we have

C+(q) R[w] — R[x]/(x2 -f bx + ac)
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Proposition 2.2 ([11, Proposition 1]).

1. Let (M,q) be a primitive quadratic form and C C+(M, q) its even

Clifford algebra. Then M becomes a projective C-module of rank one, and

(M, q) is a quadratic form of type C.

2. Let C be a quadratic R-algebra and (M, q) be a nonzero quadratic

form of type C. Then there exists a unique homomorphism of R-algebras

i: C+(M,q)->C

satisfying <f>(u)x ux for u C+(M,g) and x G M. Furthermore, f is an

isomorphism if and only if q is primitive.

If q is a binary form over Z of discriminant D, then C+(M, q) is the

unique quadratic algebra Cd over Z of discriminant D. If moreover q is

primitive, then q is of type Co Thus all the primitive forms of discriminant
D are of type Cd-

Kneser showed [11, Theorem 3] that the set G(C) of primitive binary
forms of type C modulo C-isomorphism forms a group for composition,
which generalizes Gauss' theory for binary quadratic forms over Z. The

group law on G(C) is explicitly given as follows : The composition of (M, q)
and (M\qr) is the form (M Ml, #")* where q/f(x® y) q(x)q'(y). The

neutral element is clearly (C,n).
The relation between C-isomorphism and ^-isomorphism of quadratic forms

is explained by the following proposition. Recall that an algebra over a field
is étale if it is a product of separable extension fields of that field.

PROPOSITION 2.3. Let C be a quadratic R-algebra, and suppose that
C®K is an étale K-algebra. Let (M,q) and {M',q') be nonzero quadratic
forms of type C. Then every R-isomorphism f: (M,q) —» (M',q') is either
C-linear or C-sesquilinear.

Proof. By extending scalars to K, it will suffice to prove our proposition
for the case when R — K. The map / will induce an isomorphism of the
even Clifford algebras C+(M,q) C+(M',q'). These algebras are canonically
isomorphic with C by Proposition 2.2, and hence / induces an automorphism
U of the -algebra C satisfying f(cx) /#(c)/(x). By hypothesis C is an
étale algebra over K, so its only K-automorphisms are the identity and the
canonical conjugation. Thus /*(c) is either c or c for all c G C, which
completes the proof.



68 J.W. HOFFMAN AND J MORALES

Note that the proposition is false if C ® AT is not étale, as can be easily
seen by taking C =* R[t]/(t2) with the norm form.

Let (M, q) be a nonzero binary quadratic form over R. Suppose that it is

of type C, and let C* be the subgroup of the units of C with n(c) 1.

Then we obtain a natural homomorphism (lc multiplication by c in M):

(9)
Cf —> SO(M,q)

c I > lc

where SO(M, q) C Aut^(M) is the subgroup of /^-automorphisms fixing q
and having determinant 1.

COROLLARY 2.4. With the above hypotheses, and assuming that C <g> K
is an étale K-algebra, the map (9) is an isomorphism.

Proof. Since M is projective of rank one over C, the map c —> lc is an

isomorphism C ~ Endç(M) ; thus it is enough to show that the elements of
SO(M, <7) are C-linear.

Let f G SO(M, g). It is sufficient to show the C-linearity of / locally ; so

we may assume M C and q — an with a G Cx

The canonical conjugation a of C preserves <7 and has determinant — 1.

Suppose now that / is C-sesquilinear. Then fa is C-linear, i.e. fa lc for
some c G Cx which must satisfy n(c) — det(Zc) 1, since lc preserves q.
Thus det(f) — 1, contrary to our hypothesis. Hence, by Proposition 2.3, the

map / must be C-linear.

To define an analogue of Eisenstein's determining form (2) for general

rings, we shall need the more general notion of binary quadratic mapping.

A binary quadratic mapping over R is a triple (M, g, N) where M is

a projective /^-module of rank two, N is a projective /^-module of rank

one and q: M —> N is a map such that q(ax) ~ a2q(x) and b(x,y)
q(x + y) — #(x) — qiy) is /^-bilinear.

A morphism (M,q,N) —> (M\q\Nr) is a pair (/", g) of /^-linear maps

f:M-^Mf and g\N-*Nf
such that q'f gq. We say that (M,q,N) is primitive if Rq{M) N. If N is

free over R, then choosing a basis n of N we can write g(x) Q(x)n. Then

(M, Q) is a quadratic form in the previous sense. Note however that in this

case (M,q,N) is isomorphic to (M/,q\N/) as quadratic mappings if and only

if there exists a unit u G Rx such that (M, Q) (M7, u<20 as quadratic forms.
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Hence we can think of a quadratic mapping over R as defining a family of

quadratic forms up to similarity equivalence, locally on a covering of Spec/?,

and glued together in an obvious sense.

In the case R Z every projective module is free, so that a quadratic

mapping in this case is the same thing as a quadratic form, but up to similarity
equivalence as above. This differs therefore from the usual theory, based

on SL2(Z) -equivalence, but this difference is easily accounted for (see the

discussion for PIDs in Section 5).

Let C be a quadratic algebra and assume that M is a projective C-module

of rank 1. A quadratic mapping (M,q,N) is of type C if q satisfies the

identity (8).

In order to have an analogue of Proposition 2.2 we need a definition of
the even Clifford algebra in the context of quadratic mappings. The (total)
Clifford algebra of a quadratic mapping (as opposed to a quadratic form)
cannot be defined. The reason is that the Clifford algebra is not a functor for
similarities of quadratic forms. As Kneser observed, the even Clifford algebra
is a functor for similarities of quadratic forms. We can define directly the

even Clifford algebra for quadratic mappings as follows :

DEFINITION 2.5. Let (M,q,N) be a quadratic mapping. The even Clifford
algebra C+(M,q,N) is the quotient of the tensor algebra

TR(N*

where A* Hornr(N,R), by the ideal generated by

|A®x®x-A(?(x))
[ (A <g) x <g> y) <g> (ß ® y <g> z) - A(g(y)) fi <g> x <g> z

(A, (J. e N*,x,y,ze M).

One verifies easily that the above definition depends only on the isomorphism

class of (M,q,N). For a similar construction, see [10, Ch. II, Section 8],
Note that the second defining relation can also be written as

(A ® x <g> y) ® (fj, <g> y (g> z) - p(q(y)) A <g> x ® z.

This is because A A(v)/i(w) on N since the difference is an alternating
bilinear form, which must vanish since N has rank 1. We also need to define
a C+(M, q, N)-module structure on M; this is not completely obvious since
the total Clifford algebra is no longer available. We begin with a lemma :
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LEMMA 2.6. Let Q be a quadratic form on M and let B be the associated

bilinear form. Then

B(x, y)z — £(z, x)y + B(y, z)x 0 (mod 2M)

for all x, y, z G M.

Proof Let C be the Clifford algebra of Q. The expression

(H) L sign(ff)X<7lXff2X<J3

a

where o runs over all permutations of {1,2,3}, defines an alternating
i^-trilinear map M3 — C. Since M has rank 2 over R, we have A3M — 0 ;

thus the expression (11) is identically zero. The lemma follows from the

identity XiXj + XyX* £(xz-,x/) in the Clifford algebra.

We can now define a C+(M, g, AO -module structure on M as follows:

(12) (A ® x ® y) • z 5[A(i>(x, y))z - x))y + A(fc(y, z))x].

Note that dividing by 2 in (12) makes sense in M by virtue of Lemma 2.6

applied to Q \o q, B Xob, and the fact that R is an integral domain

of characteristic not 2. To see that this is a well-defined module we need:

LEMMA 2.7. The definition (12) is compatible with the defining relations

(10) far C+{M,q,N).

Proof This is straightforward for the first relation. For the second relation
of (10), we can, without loss of generality, extend scalars from R to its fraction
field K. We prove that the second relation vanishes when applied to an element

w M. If the vectors z and y are linearly dependent, say z ay for a G K,
then the second relation is a consequence of the first, so we may assume that

z and y are linearly independent. In this case it is enough to consider the

subcases (a) w y, (b) w z, since now y, z forms a basis of M. The case

(b) is easily seen by direct computation of both sides. In case (a), applying
(À 0 x 0 y) 0 (p <S> y 0 z) to y, we get

i (2fj,(b(y, z)) X(b(y, y)) x - p{b(y, y)) X(b(x, y)) z

+ fi(b( y,y))X(b(z, x)) y - /*(&(y, y)) X(b(y, z)) x)

In the last three terms in this formula, we may exchange À and p, using the

identity \(u)p{v) m À(v)p(u). The expression then reduces to

\X{q{y))[n{b{x, z))y -n(b(y,x))z + ß(b(z, y))x)

which is exactly the proposed identity.
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It is important to note that in the case of a quadratic form, as opposed to

a quadratic mapping, (12) really defines the usual module structure given by

multiplication in the Clifford algebra of the form. Namely, the expression in

(12) equals x®y®z in that algebra. We leave this verification to the reader

(hint: use (11) and the fact that x®y(g)z z(g)y(g)x in the Clifford algebra
of a binary quadratic form).

Locally on Spec (R), where both M and N are free, the choice of
trivializations of these modules reduces a quadratic mapping to a quadratic
form well-defined up to scalar multiples by a local unit. The even Clifford
algebra as we have defined it is isomorphic on this open set to the Clifford
algebra of this quadratic form, and the module structure as we have defined
it coincides with the module structure given by multiplication in the Clifford
algebra of the locally defined form. In fact, we can define the even Clifford
algebra and the module structure by taking these locally defined objects and

gluing them together, which provides an alternative construction.

Here is the analogue of Proposition 2.2 for quadratic mappings :

Proposition 2.8.

1. If (M,q,N) is primitive, then M is a projective C C+(M,q,N)-
module of rank one and q is of type C.

2. Let (M,q,N) be a nonzero quadratic mapping of type C, and
let C+(M,q,N) be its even Clifford algebra. Then there exists a unique
homomorphism of R-algebras f: C+(M,q,N) —> C satisfying f(u)x ux for
u e C+(M,q,N) and xGM. Furthermore, f is an isomorphism if and only
if q is primitive.

We shall omit the proof, since it is essentially rephrasing the proof given
in [11, Proposition 1].

Remark 2.9. Proposition 2.3 also holds for quadratic mappings. This can
be easily seen by extending the scalars to K.

M. Kneser [11, Section 6] shows that the set H(C) of isomorphism classes
of primitive binary quadratic mappings (AT, q, N) of type C forms a group for
composition, the neutral element being (C,rc,R). Note that the equivalence
relation here is C-equivalence : an isomorphism is a pair (f, g) as before, but
with / a C-linear isomorphism. He also showed that H(C) is isomorphic to
the group Pic(C) via the canonical map (Af, q, N) ^ M.
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We compare the group G(C) of C-isomorphism classes of primitive
quadratic forms of type C and the group H(C) above by means of the

canonical group homomorphism G(C) —> H(C) induced by the correspondence

(M,q) I > (M, g,/?). M. Kneser (op. cit.) showed that this map fits into an

exact sequence

(13) 0 —> Rx/n{Cx)— G(C) —> H(C) Pic

In the classical case of a quadratic Z-algebra C of discriminant D, the

sequence (13) was essentially known to Dedekind. Since Pic(Z) 0 and

Zx {±1}, the sequence (13) shows that the group G(Q is the narrow
class group of C if D > 0, and it is {±l}x the class group of C if D < 0

(the sign corresponding to positive and negative definite forms). In either case,

it differs from the ideal class group Pic(C) at most by a cyclic factor of
order 2.

It is worth noticing that the exact sequence above has a natural interpretation
in flat cohomology. Let 7r: SpecC —> Spec R be the natural morphism. Let
G Autc(C,/i) and H AutdC.n.R) as group schemes over Spec/?. One

sees immediately that H 7r*Gm, where Gm is the multiplicative group
scheme, and that Q is the kernel of the norm map n: 7r*Gm Gm. From
the short exact sequence of group schemes over Spec/?

O^G—>H—+Gm—*0,

we obtain the long exact sequence (see [14, Chap. Ill, §4])

0 Rx/n(Cx)-, HftiSpecR, Q) tf^SpecR,H) A H^SpecÄ.G

where the flat topology is understood. The group G(C) [respectively H(C) ] can

be identified with H\(SptcR, G) [respectively Hl(SpecR, H)] by interpreting
quadratic forms [respectively quadratic mappings] as torsors for G [respectively

H] in the flat topology.

Note that there is a natural isomorphism

Spec R, 7r*Gm) Spec C, Gm),

so we also have H(C)Pic(C) (compare [11, Proposition 2]).
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3. Cubic forms

We shall assume henceforth that the ground ring R is an integral domain

of characteristic not dividing 6. The field of fractions of R will be denoted

by K as previously.

Let M be a projective F-module of rank 2, and let M* Hom^(M, R)

be its dual. Consider the symmetric algebra

Sym r(M*) ® Sym£(M*).
n

In this paper, a binary n-form is a pair (M,F), where M is a projective
F-module of rank 2, and F G Sym£(Af*). A morphism (M,F) —> (M',Ff) is

an F-linear map <j>: M M' such that Ff(j) F.

DEFINITION 3.1. An element F G Sym^(M*) will be called a Gaussian

n-form if there is a symmetric n -linear form T: M x • • • x M —» I? with

F(x) T(x,...,x).

The set of Gaussian n-forms is a submodule of SymÄ(M*) and will
be denoted by Sn(M*). The module Symn(M*) is projective of rank n F I

over R. If no binomial symbol (") is zero in R for 0 < i < n, then

Sn(M*) is also a projective F-module of rank n-hi. If each of these binomial
symbols is invertible in R then Sn(M*) SymR(M*). Note that for any
F-homomorphism M —> Mf, the induced map Sym nR{M'*) —* SymR(M*)
sends Sn(M'*) to Sn(M*).

In this section we shall concentrate on binary cubic forms (n 3). Unless
otherwise stated all the binary cubic forms we shall consider are assumed to
be Gaussian forms.

Let F G S3(M*) and let T be the symmetric trilinear form such that
F(x) T(x,x,x). For fixed x G M we consider the homomorphism

Tx : M —> M*

y I—> [z-> 7(x,y,z)].

Applying the second alternating power functor A2 we get a homomorphism

A2 Tx : A2 M —> A2 M*

thus an element of V(M) := Hom^(A2M, A2M*). We define

(14) 7f(X) := A2 Tx



74 J.W HOFFMAN AND J. MORALES

It is immediate from the definitions that

(15)

is a binary quadratic mapping in the sense of Section 2. It is also evident
that if (M, F) is isomorphic to then (M, qp,D(M)) is isomorphic to

Definition 3.2. The quadratic mapping (M,qp,T>(M)) is called the

determining mapping of (M, F).

By abuse of language, we shall refer sometimes to qp as the determining
mapping of F, without referring explicitly to the underlying modules M and

D(M).
Over any open subset of Spec R where M is free, the choice of a local

basis m {mi, 1112} of M allows us to write

(16) Fix) üqx\ 4- 3^1x^x2 4- 3a2xix% 4- <23*2 5

where x =ximi + X2I112. Let m* {m{, m|} be the dual basis of M*. An

easy computation gives

In the bases mi A m2 for A2M and —m{ A mj for A2M* (note the sign

change), the determining form qp is given by

which shows that (15) coincides locally with Eisenstein's determining form (2).

Now let C be a quadratic F-algebra as in Section 2 and let M be a

projective C-module of rank one.

rx(mi) (oqXi + aix2) m{ + (öqxi + a2x2) mj

Lx(m2) {a\x\ + a2x2) m{ 4- (<22*1 + a2>xi) m2 •

(17)

aoxi + a\x2 a\X\ 4- a2x2

a1X1 4- o-2x2 &2X\ 4- <33X2

(a\ - a^a2)x\ + {a\a2 — a0a3)xix2 4- {a\ — aiai)x\

Definition 3.3. Let F e S3(M*) and let T be the symmetric trilinear
form associated to F. We will say that F is a C-form if T(cx, y,z) is

symmetric in x,y,z for any c G C.
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Remark 3.4. The above definition makes sense for forms in Sn(M*) for

any n. In particular, one has the notion of a quadratic C-form. This should

not be confused with the concept of a quadratic form of type C. Indeed, it is

easy to see that a quadratic form q is of type C if and only if the symmetric
bilinear form b attached attached to q satisfies Z?(cx, y) b(x, cy) ; whereas

the condition for a C-form reads b(cx, y) b(x,cy).

We will use throughout the notation

M®3M®cM<g>cM, Mf =M®rM®rM

Note that there is a natural epimorphism of 7?-modules p : —>

We have the following characterization of C-forms :

LEMMA 3.5. Let F S3(M*) and let T be the associated symmetric
R-trilinear form, viewed as a linear form on Mf3. Then F is a C-form if
and only if there exists a linear map A: M®3 —> R such that T X o p.
Furthermore, the map A is unique.

Proof It is enough to prove the lemma locally, so we assume that M is
free over C.

Let A: M®3 -> R be an /Chomomorphism. Write M Cm for some
me M and let x cim, y c2m, z c3m with cz C.

Then T(x 0 y 0 z) A(ciC2C3(m ® m ® m)) is visibly symmetric and
satisfies the condition of Definition 3.3.

Conversely, if T(cx,y,z) is symmetric then in particular T itself is
symmetric (c 1), and hence

7(cx, y, z) 7(x, cy, z) 7(x, y, cz),

showing the existence of A. Uniqueness follows from the fact that p is
onto.

Let S3c(M*) c S3(M*) be the submodule of cubic C-forms on M. Note
that the lemma above can be summarized by saying that the map

(18)
HomÄ(M®3, R) —» S3c{M*)

A I—I [x A(x 0 x (8) x)]

is an isomorphism of R-modules.
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On the other hand, we also have

LEMMA 3.6. Let L be any projective C-module of finite rank. Then the

map

HornC(L, C*) — HomÄ(L, R)

/i—*(xh*/(X)( 1))

is an isomorphism of C-modules (the dual P* Hom^(P, R) is made into a
C-module by setting (cX)(x) A(cjc) for À G P*

Proof By localization, it is sufficient to prove the lemma when L C,
in which case the map is the identity.

Combining the isomorphisms (18) and (19) with L M®3, we obtain

Proposition 3.7. The map

Hornc(Mf,C*)—>S3c(M*)

f I—» [F<f>: x h-* 0(x®x0x)(l)]
is an isomorphism of R-modules.

Using the isomorphism (20) we give S2C(M*) the C-module structure so

that this bijection becomes a C-module isomorphism. Note that

7^(x, y, z) := <£(x <g> y <g> z)(l)

is the symmetric trilinear form attached to F<p. Hence the C-module structure

on S3c(M*) is given explicitly by

(21) (cF)(x) T(cx,x,x).

LEMMA 3.8. C* is an invertible C-module.

Proof Locally over SptcR, we have C — R[co] R[x]/(x2-\-bx+c). Then
the /Cmodule C* is freely generated by Ài,À2, where Ai(l) 1, Ai(cu) 0,
A2(l) 0, A2(o;) 1. One sees that cjA2 Ai — 6A2, so that A2 is a local
C-module basis of C*.

By virtue of (20) and this lemma, 5^(M*) is an invertible C-module.

In the next section we will give alternate characterizations of the cubic

C-forms on M, related to their determining mapping.
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4. A Lie algebra representation

Let Mbe a projective 7?-module of rank two. Let G AutÄ(M) and let

g — Endr(M) viewed as a Lie algebra over R.

The group G acts on the right on Syms(M*) by algebra automorphisms

via
(Fa)(x) F(cjx)

for F £ Sym R(M*) and a eG. Taking the formal derivative at the origin of

the associated map
G Auttf_aig(Sym R(M*))

we get a representation of Lie algebras

(22) p : 0 —» Der/?(SymR(M*)).

The action of G preserves the homogeneous components Sym^(M*) and also

the submodule Sn(M*) of Gaussian forms. The same is true for the Lie algebra

action of 0.

We shall compute the action of g on Sn(M*) explicitly :

LEMMA 4.1. Let F e Sn(Af*) and let T be the associated n -linear form.
Then

p(g)(F)(x) n7(px,x,...,x)

for all g e $.

Proof To compute the derivative of G —> AutR(Sn(M*)), we extend the

scalars to the "dual numbers" R[e]/(e2). Using the symmetry of T we have

F((l + ge)x) F(x) + nT(gx, x,..., x) e

which proves our assertion.

Let C/R be a quadratic algebra in the sense of Section 2 and let M be

an invertible C-module. Then we have a natural map C End/?(M) and we
can restrict the representation p to C. Note that when F is a field and C
is an étale quadratic algebra then the image of C is a Cartan subalgebra f)c

of 0.

Comparing (22) with equation (21), we see that the C-module structure
on Sq{M*) is related to the Lie algebra action by

(23) cF \
We will make this explicit in a special case that we need :
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LEMMA 4.2. Let F C S3(M*) be a binary cubic form over a field K of
characteristic not 2 or 3. Let qF be its determining form, and C — CF(qF)
its even Clifford algebra. Let xi, x2 be coordinates on the vector space M
with respect to a basis mi,m2. Let

t mim2 - m2mi e C C+{qF).

Note that r2 D is the discriminant of qp. Then

dqF 3
_

dqp 9
^ dx2 dx\ dx\ 0x2 '

acting on forms of any degree.

Proof As we have seen,

qF(xiiîij + x2m2) Px\ + Qx\X2 + Rx\

where P a\ — ao«2, Q — a\02 — a^a^, and R a\ — a\a-$. By direct
computation in the Clifford algebra C, we see that

rmi Qm\ — 2Pm2

rm2 2Rm\ — Qm2

Since p{c) is a derivation of SymR(M*), we have

0 0
p(c) p(c)(x0— + p(c){x2)—

Thus r(ximi + x2m2) (Qx\ + 2i?x2)mi — (2Px\ + ßx2)m2, which gives

P(f)(xi) 0qF/dx2 and p(r){x2) ~0qF/0xi.

Corollary 4.3.

(24)

p(j)qF

p(r)F

0 and

_ 0F/0xi OFj0x2

Oqpj0x\ OqF j0x2

— 3GF

where GF is as in (5).

Remark 4.4. If we further assume that C is an étale algebra, then as we
have remarked, p maps C onto a Cartan subalgebra of End^(M) ^ g[(2, K).
This algebra decomposes as

be 3© be

where the first factor is the center, consisting of scalar matrices, and the second

factor is the intersection 2, K), consisting of matrices of trace 0. As

the formulas in the proof of the preceding lemma show that r acts on M
with trace 0, we see that f)'c Kr.



ARITHMETIC OF BINARY CUBIC FORMS 79

THEOREM 4.5. Let C/R be a quadratic algebra such that C<S>K is étale

over K. Let M be a projective rank-one C-module and let F G S3(M*) be

such that the determining mapping qF is not 0. Then the following conditions

are equivalent:

(a) F is a C-form

(b) (MyqF,T)(M)) is of type C

(c) p(c)p(c)F 9n(c)F for all c G C.

Proof (a)=>(b). If T is the trilinear form attached to F, then, using the

symmetry of F(cx, y,z), we have

qF(cx)A2 T(cx-, -)
A2 T(x

n(c) A2 (7Xx, -, -))
n(c)qF{x),

which proves the claim. In fact, this implication does not depend on C <g> K
being étale.

It is enough to prove the theorem for the case where R K is a separably

closed field. We can assume in this case C K[a] with a satisfying a2 1.

We will make these assumptions for the rest of the proof.

(b)=>(c). Let {mi,m2} be a basis of M over K with ami mi and

am2 —m2. With respect to this basis, the form qF, being of type C, must

have the shape

qF(x) ooc\X2

where a / 0. To see that this is so, note that because qF is of type C, we
have qF{am\) n(o)qF(mi) —qF(mi), which shows that qF(mi) 0.
One sees similarly that qF(jn2) — 0. Then the coefficients of F(x)
aoxl + ?>a\x\x2 + 3a2x\X2 + a^x\ satisfy the relations: a\ — a$a2 0,

aia2 — ao<23 — öl an<I a\ ~ aia3 — 0. Since a^0, it follows at once that

ax — a2 — 0, so F is of the form F(x) \x\ + px\. Since qF ^ 0 (in fact
nondegenerate under the étaleness hypothesis), the algebra C can be identified
with the even Clifford algebra C^(M,qF,T>(M)) by Proposition 2.8. Under
that identification we have r aa, where r is defined as in Lemma 4.2. From
that lemma we get p(cr) x\djdx\ —x2d/dx2, which can be seen directly,
since both sides agree on xi,x2. Hence p{cr){p^~loéf) (3 — 2i)x\~lx^. In
particular, for F(x) Ax3 + pj?2 we have

p(a)p(jcr)F —p(cr)2F -9F 9n{cr)F.
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The more general identity p(c)p(c)F — 9n(c)F for c G C follows from this

particular case by noting that, from Lemma 4.1, p(l)F 3F.

(c)=>(a). Suppose that p(a)2F 9F. Then F must have the form F
Xx\ + px2. This is because, as we saw in the discussion above, the monomials
x\~~lxl2 are eigenvectors for the operator p(cr)2 with eigenvalue (3—2i)2, which
equals 9 only for i — 0 and i 3. Hence the associated trilinear form is

T(x, y,z) Axiyizi +/ix2y2Z2- Thus T(crx, y,z) Aaqyizi - px2y2Z2, which
is visibly symmetric in x,y,z.

Remark 4.6. It is interesting to notice that the syzygy (6) can be

recovered from Part (c) of Theorem 4.5. Assume for simplicity that R — K
is a field and C is an étale F-algebra. Let {mi,m2} be a basis of
M. Let t ?» mim2 — m2mi e C C+(qF) as in Lemma 4.2. As

we noted in Remark 4.4, r generates the trace 0 part of the Cartan

subalgebra defined by C. Using the derivation property and Corollary 4.3, we

see p(r)(G2F — DF2) (2/3)(p(r)2F — 9DF)Gf- From the above theorem,

p(r)2F ça 9DF, so this is 0. On the other hand, p(r)qF 0, also by

Corollary 4.3, which implies that p(r)qF 0. Hence both qF and GF — DF2

lie in the subspace on weight 0 (for the action of the Cartan subalgebra

\]'c C 51(2, K)) of S6(M*). As S6(M*) is an irreducible representation of
51(2, K), this is one-dimensional. Hence qF and GF — DfF2 differ by a

constant multiple. A priori, this constant could depend on F (e.g., D). That
this is not so can be seen by noting that both sides are of the same degree

in the coefficients of F.

COROLLARY 4.7. Let M be a projective R-module of rank 2, and let

F G S3(M*).

(i) Let C — C+(M, qF, D(M)) and suppose that C (g) K is étale, and that

qF is primitive. Then F is a C-form.

(ii) If F is a C-form for a quadratic R-algebra C and (M,qF:D(M)) is

primitive, then C C+ (M, qF, D(M)).

Proof (i) By Proposition 2.8, (M,qFlV(M)) is of type C. We conclude

by Theorem 4.5.

(ii) If F is a C-form, then by Theorem 4.5, the quadratic mapping

(M, qF, D(M)) is type C. But assuming furthermore that (M,g/r,D(M)) is

primitive, we see that C is isomorphic with C+(M,qF,T)(Mj) by Proposition

2.8.
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LEMMA 4.8. Suppose that C <g) K is étale over K and let (M,F) and

tM',Fl) he cubic C-forms. Assume that the determining mappings qF,qF>

are nonzero. Then every R-linear isomorphism f : (M, F) » (M F is either

C-linear or C-sesquilinear.

Proof. The map / will induce an isomorphism of determining quadratic

mappings of type C. We conclude by Proposition 2.3. D

5. Structure of the cubic C-forms

We shall describe below the C-module structure of S3C(M*) and the

corresponding C-isomorphism classes.

Theorem 5.1. Let M be a rank-one projective C-module. For each

f G Homc(M®3, C*) we define a cubic form by F^(x) 0 x 0 x)(l).
Then

(i) The correspondence f is an isomorphism of C-modules

Homc(M®3, C*) —» S3c(M*).

(ii) The determining mapping qF(f} is primitive if and only if f is an

isomorphism.

(iii) Two cubic C-forms F and F\ on M are equivalent over C if and only

if there exists cGCx such that F\ c3F.

Proof, (i) This is a restatement of Proposition 3.7. The map <f F$ is

a C-isomorphism by definition of the structure of C-module on Sç(M*) in
Section 3.

(ii) It is enough to prove our assertion locally, so we assume that M is
free over C. Write M Cm for some m G M. Let À m (g) m (g) m). Then
we have f(xm (g) ym (g) zm) \(xyz). Let ß(ym,zm) X(yz) and observe that
À is a basis of C* over C if and only if the symmetric bilinear form ß is

unimodular. We have

qF(f>(xm) - n{x)qF(f>{m)

n(x) A2 ß

It follows from this equality that qF(j} is primitive if and only if ß is unimodular,
that is, if and only if f is an isomorphism.
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(iii) Let F and F\ be cubic C-forms on M. Suppose that they are

C-isomorphic. Then there exists c G Cx such that F\ F olc. Let T be the

symmetric trilinear form associated to F. Since 7(cx,cy,cz) — r(c3x, y,z),
we get F\ c3F. Conversely, if F\ c3F we may reverse these steps to
conclude that F\ F olc

We shall henceforth denote by Cubicc(M) the set of C-isomorphism classes

of cubic C-forms on M with primitive determining mapping. Recall that when
M is an invertible C-module, there is a unique primitive quadratic mapping

of type C on M ([11]). If F G Cubicc(M), then necessarily

(M, qF, D(M)) - (Af, g, W) in //(C), and C C+(M, gF, D(M))

by Corollary 4.7 (ii) ; in particular, all members of Cubicc(M) have isomorphic
determining mappings.

THEOREM 5.2. Let M be a projective C-module of rank one.

(i) The set Cubicc(M) is nonempty if and only if 3[M] — [C*] in Pic(C).

(ii) If 3[M] — [C*] in Pic(C), then the group Cx/Cx3 acts simply
transitively on the set Cubic^(M).

Proof (i) By Part (ii) of Theorem 5.1, the module M admits a cubic
C-form with primitive determining mapping if and only if there is an

isomorphism M3C —» C*.

(ii) Since M®3 and C* are invertible C-modules, Isomc(M^3,C*) is

either empty or it is a torsor for Cx (i.e., a simply transitive Cx-set). It is

nonempty if and only if Cubicc(M) is nonempty, by Part (i). Suppose this is

so, and choose an isomorphism <j> : M3C —> C*. Each cubic C-form on M with
primitive determining mapping is uniquely of the shape Fc^ with c G Cx by
Parts (i) and (ii) of Theorem 5.1. By Part (iii) of Theorem 5.1, the form FC(f>

will be isomorphic with F$ if and only if c G (Cx)3.

We discuss next the relation between /^isomorphism and C-homomorphism
of cubic forms.

Let CubiCfl(M) be the set of R-isomorphism classes of binary Gaussian

cubic forms on M with primitive determining mapping of type C. Set

§fi(Q ]J CubicR(M) and S(C) ]J Cubicc(M),
[M] m

where [M] runs over the elements of Pic(C) satisfying 3 [M] [C*] and

means disjoint union.
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The set 8(C) carries a natural involution given by

[m,F]^WT\- [M,F],

where M is defined as follows : M M as F-modules with C acting by

c • x cx, where c i-> c is the canonical involution of C. This is well-

defined because qp depends only on the F-module structure of M, and it

will be of type C for M if and only if it is so for M since n(c) n(c).

Note that [M,F] [M,F] if and only if (M,F) possesses a C-sesquilinear

automorphism.

PROPOSITION 5.3. With the previous notation we have

(i) §r(C) S(Q/ where ~ identifies [M,F] with [M, F].

(ii) If [M] [M] and 3[M] [C*], Cubicc(M) has an element [M,F0]
/ixed under the involution.

(iii) If [M] ^ [M] and 3 [M] [C*] in Pic(C), tficn Cubicc(M)
Cubic/? (M). In particular, Cubic/?(M) L a simply transitive (Cx/Cx

Proof, (i) Let ijj: (M,F) —> (Mr ,F') be an F-isomorphism. Then V is

an isomorphism of quadratic mappings {M,qp,T>(M)) —> (M', F7, T)(M')). By
Proposition 2.3, the map ip is either C-linear or C-sesquilinear. Hence either

[M,F] - [M',F'] or [M,F] [M^F7].

(ii) We start out with an element [M, F] G §(C), which exists by hypothesis

on M and by Theorem 5.2(i), and we choose a C-sesquilinear automorphism

o: M M. We know by Theorem 5.2 that all the C-forms on M are of the

form wF with w G Cx In particular Foo — wF for some w G Cx An easy

computation using (21) shows (wF)oa w(Foo), so F oo2 — wwF. Since
a2 is C-linear, it follows from Theorem 5.2 that ww G Cx3. Using the fact
that the cohomology of Z/2Z with coefficients in a group of odd exponent
(in this case Cx/Cx3 with Z/2Z acting via the canonical involution of C) is

trivial, we conclude that w u~luv2 for some u,v G Cx Let Fq uF. By
direct computation we have Fqoct — v3Fq ; thus [M,F] [M,Foa] [M,F]
as claimed.

(iii) If [M] / [M], by Part (i), no two distinct elements of Cubicc(M) can
be identified in Cubic/? (M), that is, the canonical projection

Cubicc(M) Cubic/?(M)

is a bijection. The second assertion follows from Theorem 5.2.
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COROLLARY 5.4. Let [M] E Pic(C) be as in Part (ii) of Theorem 5.3.

Let [M, Fq] Cubicc(M) be a the fixed point of the involution. Then the

map (Cx /Cx * Cubicc(M) given by u i—> [M, wFo] w an isomorphism of
Z/TL -sets. In particular, this correspondence induces a bijection Cubic^(M) ~
(Cx/Cx )/~, where f>sj identifies c with c.

Proof. By Theorem 5.2, it is enough to show that the map u i—>

[M, uFq] commutes with the action of Z/2Z via the involutions. Let

a: (M,Fo) —> (M,Fo) be a C-isomorphism and let u E Cx Since (wFo)ocr —

ïï(F0 o cr), we have [M, wFo] — [M, wF0] [M, (wF0) o ct] [M, w(F0 o cr)]

[M, ïZFo].

The above proposition applies in particular to the case of fields. We can
summarize our results in this case as follows :

PROPOSITION 5.5. Let K be afield of characteristic not 2 or 3. Let $k
be the set of K-isomorphism classes of all binary cubic forms over K with

nonzero discriminant. Then there is a natural partition

(25) Sk JJ Cubic*(C),
c

where C ranges over the quadratic étale K -algebras and each Cubic^(C) is

in one-to-one correspondence with the quotient of CX/(CX)3 by the involution

c \-* c

Proof. If K is a field then Pic(C) 0 for all quadratic K-algebras C.
Each cubic form with nonzero discriminant will be a C-form for a unique

quadratic étale algebra, namely the even Clifford algebra of its determining
form, by Proposition 2.8 and Theorem 4.5. We finish by applying Proposition

5.3.

As an illustration of these ideas, we prove a result known to L. E. Dickson

[5, page 23] :

PROPOSITION 5.6. Let K — Fq be a finite field with q elements, not of
characteristic 2 or 3. Then the number of GL2(F^) -equivalence classes of
binary cubic forms over with nonzero discriminant is 3 if q 2 mod 3,

and is 9 if q 1 mod 3.
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Proof. The étale quadratic algebras over Fq are

1. C ¥q x¥q;
2. C — Fç2

If q 2 mod 3, then CX/(CX)3 is trivial in the first case and is Z/3Z
in the second case since q2 1 mod 3. In the second case the involution

c -> c fixes the identity element of CX/(CX)3 and interchanges the other

two elements, giving 2 orbits on this. This gives 1+2 orbits in total, so

by Proposition 5.5, we have 3 isomorphism classes of binary cubic forms. If
q= 1 mod 3, then CX/(CX)3 is Z/3ZxZ/3Z in the first case and is Z/3 in

the second case. In the second case, the Galois involution acts trivially, since

Fx /(Fçx)3 CX/(CX)3. This gives 3 orbits. In the first case, the involution

flips the two factors, and there are clearly 6 orbits. This gives a total of 9

orbits, and hence 9 cubic forms.

Remark 5.7. When R K is a field of characteristic not 2 or 3, one can

give an alternate description of §R. Since GL2 acts threefold transitively on
P1, any binary cubic form with nonzero discriminant is equivalent over the

separable closure of K with <D — xy(x — y). Therefore, by the usual descent

yoga, there is a canonical bijection

(26) $KxH\K,Aat($)),

where Aut(O) is the K-group scheme of automorphisms of O. The structure
of Aut(O) is easily worked out:

Aut(O) p3 x S3,

where S3 is the symmetric group on 3 letters as a trivial Galois module; it
corresponds to the stabilizer in PGL2 of the set of zeros of O in P1.

The signature S3 —> p2 induces a homomorphism 6 : Aut(O) ju2, which
in turn induces a map in Galois cohomology

(27) 5»: H\K,Autm ^ H\K,^2) Kx/K

Using (4) and the identification (26), we can show that

6*(F) —3Df Kx/Kx2

Thus we can interpret the partition (25) as the partition on Hl(K, Aut(4>)) given
by the fibers of 5», the set Cubic^(C) corresponding to the fiber
where D is the discriminant of C.
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When R is a PID we can give a more precise version of Theorem 5.2. In this

case, C is a free ^R-module, and since Rl is a direct factor, C R(&Ruj R[io]
is a monogenic /^-algebra. Therefore C* is free of rank one over C (see

Section 7), so the condition 3[M] [C*] of Theorem 5.2 reads simply
3[M] 0. Furthermore, since Pic OR) 0, the exact sequence (13) induces

an isomorphism

(28) G(Q[3] ~ H(Q[3] - Pic (Q[3]

(note that Rx /n(Cx) is an elementary abelian 2-group).
The isomorphism (28) suggests that when R is a PID, it should be possible

to use quadratic forms instead of quadratic mappings and develop a theory for
binary cubic forms that is completely parallel to Eisenstein's theory over Z.
As we mentioned above, any projective i?-module is free, so that a quadratic
form (M,q) is the same thing as a quadratic form classically understood: a

homogeneous polynomial of degree two. If q is of type C then M R2

becomes an invertible C-module. This C-module is said to be associated to q.
We begin by proving an easy technical lemma.

LEMMA 5.8. Suppose that R is a UFD and let C R[t]/(t2 bt + c).
Let D b2 — Ac and let uj be the class of t in C. Set ô b + 2a; (note
that 62 D) and let £ x-\-y8 with x,y R. If n(0 m 0 (mod 4R), then

£ 0 (mod 2Q.

Proof It is enough to prove x by (mod 2R). Let p G R be an irreducible
element. For z G R — {0} we denote by ordp(z) the largest power of p
occurring in the factorization of z. Set m ordp(x — by). If m < ord^(2)
then, since ordp is a valuation, ordp(x-(-by) ordp(x — by Jr2by) m. Hence

ordp(x2 — b2y2) 2m < ordp(4), which contradicts our assumption (since
b2 D (mod 4i?)). Therefore ordp(x — by) > ordp(2) for all irreducible p,
which proves the lemma.

Now we can prove:

PROPOSITION 5.9. Let R be a PID and let F be a cubic form on M R2

given in the natural basis by (1), with coefficients a; G R. Suppose that its

Eisenstein determining form ^f(x) ax2 + bx\X2 -b cx\, as in (2), is primitive
of discriminant D / 0 and let C := C+(qf) — R[t]/(t2 + bt -f- ac). Then

3[M, qF] 0 in G(Q.

Proof By the syzygy (7) we have
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4qF(x)qF(y)qF(z)- DY2,

where X and Y are symmetric fl-trilinear forms in x, y, z. Applying the lemma

to the rings R' := R[x\,X2,y\,yi,Z\-,zi]and:= C ®r R' with £ + <57

(with 6 as in the lemma; the lemma applies since R, hence Rf, is a UFD),

we have

(29) gF(x)<?F(y)4F(z) n(T),

where T £/2 G C\ by the lemma. Note that T is symmetric trilinear in

x, y, z ; hence the identity (29) shows that the triplication of qF is the trivial

form, as desired.

The results below were essentially known in the case R Z to Eisenstein

[6] and [7], Arndt [1], Pepin [13], Cayley [3] and Hermite [8].

THEOREM 5.10. Let R be a PID. Let q ax\ 4- bx\X2 + cx2 be a

primitive binary quadratic form over R of discriminant D — b2 — 4ac ^ 0.

Let C C~*~(q) be the even Clifford algebra of q and let M := R2 be endowed

with the natural C-module structure. Let r G C be such that r + r 0 and
r2 D. With this notation we have

(i) There exists a Gaussian binary cubic form F such that qp q (where

qp is given by (2) if and only if 3 [M, q] 0 in the group G(C) of
C-isomorphism classes of quadratic forms of type C.

(ii) If F and Fr are Gaussian binary cubic forms with qp qF> q,
then there exists a unit c a + br G Cx with n(c) — 1 such that
Ff — cF aF + bGF, where Gp is the cubic covariant defined in (5).

(iii) Let two cubic forms F and Fr with qF — qF> q be given. The

following conditions are equivalent:

(a) There exists d G Cx with n(d) — 1 such that F' d?F.
(b) There exists d G Cx such that Ff d?F.

(c) F and F' are SL2CR) -equivalent.

Proof, (i) By Proposition 5.9 the condition 3[M,q] 0 is necessary. We
shall see that it is sufficient. Suppose 3[M,q] 0 in G(C) ; in particular

3[M] 0 G Pic (C),
thus by virtue of Theorem 5.2, Part (i), there exists a Gaussian cubic form F
such that [M, qF, R] [M, q, R] in H(C). By Proposition 5.9, the class [M, qF]
is in G(C)[3] ; hence, by the isomorphism (28), we conclude [M, qF] [M,
in G(C).
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(ii) Suppose that qF qF> — q. C®K is an étale F-algebra since D ^ 0.
Hence by Corollary 4.7 both F and Ff are C-forms and by Theorem 5.2,
Part (ii), there exists c G Cx such that F' cF (p(c)/3)F (in the notation
of (23)). Writing c a -f Fr we get F' aF + (b/3)(p(r)F). By (24) we
have p(r)F 3GF (changing the sign of r if needed) and direct computation
shows qF' — n(c)qF. Thus n(c) 1 as required. Note that in general, the

coefficients a, will have a 2 in the denominator since r b + 2uj for a

generator uj of the algebra C (see Lemma 5.8).

(iii) a)=^>b) is trivial.

b)=>c). If Ff d3F with d e Cx then, by Part (ii) of Theorem 5.2, F
and Ff are C-equivalent, the isomorphism being x — dx. We have n{d)3 1

by the proof of Part (ii) of this theorem, so replacing d by n{d)d we can

assume n{d) 1 ; that is, F and F( are SL2(J?) -equivalent, and this also

establishes the implication b)=^a).

c)=>a). If F'(x) F(dx), where d G SL2(F), then d is in the orthogonal

group of q — qF — qF' • Since det(d) m 1, it is in the special orthogonal

group of this form, hence given by multiplication by an element d G Cx by
Corollary 2.4. But F(dx) (,d3F)(x).

COROLLARY 5.11. Now let R — Z, and let D be a nonzero integer

congruent to 0 or 1 modulo 4. Let F be an integral Gaussian binary cubic

form with primitive determining form of discriminant D.

(i) Suppose D < —3. If F' is another Gaussian binary cubic form with

qF> — qF then F' is SL2(Z) -equivalent to F.

(ii) Suppose D > 0 or D —3. Then there are exactly three SL2(Z)-
equivalence classes of Gaussian binary cubic forms F' such that qp> qF-

Proof We have that C+(#f) Cd, the unique quadratic Z-algebra of
discriminant D. Note that (Cd)1x/(Cd)1x is trivial when D < — 3 and is

cyclic of order 3 when D — 3 or D > 0. The corollary follows immediately
from this and Parts (ii) and (iii) of Theorem 5.10.

COROLLARY 5.12. Let D be a nonzero integer congruent to 0 or 1

modulo 4. Let /13(D) be the number of SL2(Z) -equivalence classes if binary
Gaussian cubic forms with primitive determining form of discriminant D.
Then /i3(D) |Pic(CD)[3]| if D < -3 and h3(D) 3|Pic (CD)[3]| if D -3
or D > 0.
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Proof Follows immediately from Corollary 5.11, equation (28) and Part

(i) of Theorem 5.10.

6. COHOMOLOGICAL INTERPRETATION

Let Gm be the multiplicative group regarded as an affine group scheme

over X SpecC and let JU3 C Gm be the kernel of multiplication by 3. All
the cohomology groups below are with respect to the flat topology on X.

THEOREM 6.1. Suppose [C*] is divisible by 3 in Pic(C). Then the group
//fl(X, JI3) acts simply transitively on the set S(C) of C-equivalence classes

of cubic C-forms with primitive determining mapping.

Proof Recall that the group H\(X, \xf) can be interpreted concretely as the

set of isomorphism classes of pairs where L is an invertible C-module
and where tp: L®3 —* C is an isomorphism (see Milne [14, Chap. Ill, §4]).
Let [L, ip] be an element of H\(X, fi3) and let (M, F) be a cubic C-form. By
Theorem 5.1, Part (i), we can assume F F#, where </>: M®3 —» C* is an

isomorphism. We define an action of #a(X, p.3) on S(C) by

(30) [L, rß] • [M, F<j,\ [L 0 M, F^],
noting that

(JL®M)f =Lf®Mf
is an isomorphism. Let us show first that this action is simple. Suppose

[L0M,F^] [M,F^]. Then, L C. Choosing an isomorphism L —> C,
we have ip(x ® y ® z) uxyz, where u G Cx Hence [M,F^] [M,FW^],
and by Part (iii) of Theorem 5.1 we conclude that u — c3 for some c G Cx
But then c: C —» C provides an isomorphism of (C,^) with (C, 1), thus
[L,V] [C, 1].

We show now that the action is transitive. Let (i 1,2) be
elements of S(Q. Let M* Homc(M2,C) and let </>• : (C*)# -> (Mf3)0
be the dual of <f>2. Let L, M\ 0 Af* and let ip — fi 0 *

- One verifies
immediately that [L,• [M2,F<^2] [M^F^J, which proves that the action
is transitive.
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Note that, under the hypothesis of (6.1),

S(Q ]J Cubicc(M0 0 L)
LPic(C)[3]

where M0 is any invertible module such that M®3 C*. Each CubicC(M)
is a torsor for CX/(CX)3 by Theorem 5.2.

Consider now the short exact sequence of group schemes over X

1 » M-3 * » Gm > 1

and the associated Kummer long exact sequence in flat cohomology

H°(X,Gm) —!-» Gm) —3)—^ H\(X, Gm) —^
Using the canonical isomorphisms (see [14, Chap. Ill, §4])

H°a(X, Gm) ~ Cx, H\(X, Gm) ~ Pic (O

we obtain a short exact sequence

(31) 1 — cx/cx3 A m) ^ Pic(Ç)[3] -* 1.

By what we have proved, 8(C) will be empty unless [C*] is divisible by 3

in Pic(C). By the Kummer sequence, [C*] is divisible by 3 if and only if

9[C*] oe.tf2(x,^3).

Assume that this holds and consider the group H{C) of binary quadratic

mappings as defined by Kneser in [11]. The determining form construction

(14) gives a well-defined map

e\ 8(C)—>H(C)

We fix a "base point" [Mo.Fq] £ 8(C) and we modify the map e slightly
so that it becomes a map of pointed sets. We define

e': 8(C) —> H(C)

[M,F]^e[M,F]-e[M0,F0].

We also define a map /: H\(X, p.3) —> 8(C) by f(x) x [Mo, Fo], where

• is the action defined in (30). Note that by virtue of Theorem 6.1, the map

/ is bijective.
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With this notation we have a commutative square

Pic(C)[3]

(32) /
S(Q —H(C)[3]

where j: H(Q —> Pic(C) is the natural homomorphism [M,q,N] >-> [M].
Kneser [11, §6] has shown that j is an isomorphism (see also Section 2),

so the two vertical maps in (32) are bijections and the horizontal maps are

surjections.

Note that because of the exact sequence (31), the fibers of e' are in one-

to-one correspondence with the elements of the group Cx/Cx3. This is, of
course, equivalent to Theorem 5.2, Part (ii).

7. Explicit computations and cubic trace forms

In this section we assume that A C ® K is a quadratic étale algebra
over K. In this case the trace form (x,y) —> Tta/k(xy) is nondegenerate and

gives rise to a natural isomorphism between the codifferent

C' {x G A : Tr A/K{xC) C R}

and the dual C*. If M is a fractional C-ideal with M3 ~ C, then, by
Theorem 5.1, the cubic forms on M with primitive determining form are
given by

(33) Fu(x)lxA/K{uax3),
where a £ A is a fixed element with aM^ and m is a unit of C.
Moreover, by Theorem 5.1, two such forms Fu and Fv are C-isomorphic if
and only if u and v represent the same element of CX/(CX)3.

We shall compute explicitly some examples for Z using (33). In this
case we have C Z[t]/(f(t)), where is a monic degree-two polynomial
with distinct roots and coefficients in Z.

Let wbethe class of tinC. It is well-known, and easy to prove, that the
codifferent C" is a principal fractional C-ideal generated by where
/' is the derivative of /. Hence, [C*] is trivial in Pic(C) (note that this holds
more generally provided Pic (R) 0).
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EXAMPLE 7.1. Let C Z[1+^~^-] (note that 23 is the smallest square-
free positive integer N such that A Q(\/—N) has class number divisible
by 3 ; in fact Pic(C) ~ Z/3Z (see [2]). The class group Pic(C) is generated

by the class of
M — 2Z -{- cuZ

where uj Thus the three classes of Pic (C) are represented by
the ideals C, M and M. The quadratic forms attached to C, M and M are

respectively

xf + x\X2 + 6x^, 2xf + X\X2 + 3x^, 2xf — x\X2 + 3x|

One verifies also that 6 oj—2 satisfies M3 — 9C, thus (l/Q^/—23)M3 C'.
Hence, by (33), the cubic C-form on M is given by

where x — 2x\ + xyx). Similar computations can be done for M (taking
0 — — 1 — uj and the Z-basis {2, —1 + cu}) and for C (with the basis {1, cd}

The following table summarizes the results of these computations :

Module Cubic Form Determining Form

M —x] — 3x^X2 + 3xi^2 + 2x^ 2xi 4- X1X2 + 3x2

M X| — 3X]X2 — 3X1X2 + 2X2 2xi — X1X2 -1- 3x^

C X2(3x? + 3X1X2 — 5x1) 4 + X\X2 + 6x^

Example 7.2. Let C Here also Pic(C) ~ Z/3Z (see [2]) (in
fact 79 is the smallest square-free positive integer N such that Q(y/N) has

class number divisible by 3).
The class group Pic(C) is generated by the class of

M9Z + (4 + V79)Z.

Thus the three classes of Pic(C) are represented by the ideals C, M
and M. One verifies also that a 52 — 5\/79 satisfies M3 aC, thus

(l/2a\/79)M3 C. The fundamental unit of C is r 80-f-9\/79; hence,

by (33), the three nonisomorphic cubic C-forms on M are given by

F"w=Tr(2^r!)-
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where x 9*i + (4 + y/l9)x2 and k ** -1,0,1. Similar computations can

be done for M (taking the Z-basis {9, —4 + \/79}) and C (with the natural

basis {1,a/79}).

Module Cubic Forms Determining Form

M

—68*1 + 11 ljcfJC2 — 60*1*2 +11*2

5*? + 24*1*2 + 33*i*l + 16*2

868*? + 3729*i*2 + 5340*i*l + 2549*1

9*1 + 8*1*2 — 7*1

M

-868*1 + 3729*1*2 - 5340*i*i + 2549*1

—5*1 + 24*1*2 — 33*i *2 + 16*1

68*1 + 111*1*2 + 60*1*1 + H*2

9*1 — 8*1*2 — 7*1

C

—9*1 + 240*1*2 — 2133*i*l + 6320*1

3*1*2 + 79*1

9*1 + 240*1*2 + 2133*i*l + 6320*2

*1 — 79*1
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