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ARITHMETIC OF BINARY CUBIC FORMS

by J. William HOFFMAN and Jorge MORALES

ABSTRACT. This paper explores a connection between the theory of binary cubic
forms and binary quadratic forms that was first discovered for forms over Z by
Eisenstein. We generalize Eisenstein’s theory to cubic forms over an arbitrary integral
domain of characteristic not 2 or 3 using Kneser’s Clifford algebra interpretation of
the composition of quadratic forms.

1. INTRODUCTION

An important problem of number theory is the classification of binary
n-forms

F(x) = apx] + alx'f_lxz s bR o an—lxlxg—l + a.x, ,

where the coefficients a; are integers, up to SL,(Z)-equivalence.

In Disquisitiones Arithmetice Gauss presented a systematic theory for
n = 2, based in part on earlier researches of Fermat, Euler, Lagrange
and Legendre. Recall that a composition of two binary quadratic forms
g and g’ is a quadratic form ¢” such that there exists a bilinear map
B: 77 x 7* — 77 with the property g"(B(X,y)) = g(x)q’(y). One of the most
remarkable discoveries of Gauss is that the set of SL,(Z)-equivalence classes
of binary primitive quadratic forms of given discriminant D is a finite abelian
group with respect to composition of quadratic forms. This group was later

interpreted by Dedekind in terms of ideal class groups.
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F. G. Eisenstein in his first paper [6] showed a remarkable connection
between the theory of binary cubic forms (r = 3) and the theory of binary
quadratic forms (n = 2). This connection is as follows:

To every binary cubic form of the type

(D F(x) = aox? ~+ 3a1x%x2 -+ 3a2x1x% + agx% (a; € 1)),
Eisenstein associates a quadratic form

(2) gr(x) = Ax} + Bxyx, + Cx3

where A = a} — apaz, B = ajay — apas and C = a% — ajaz. Eisenstein [7]

calls gr the determining form of F (‘determinierende Form’). He shows that
the correspondence F — gr commutes with the natural action of the group
SL,(Z) by linear substitution and therefore takes classes of cubic forms to
classes of quadratic forms. Notice that gr is essentially the Hessian of F.

It is natural to fix a nonzero integer D = 0 or 1 mod 4 and ask for
all cubic forms F such that gr has discriminant D, in other words, for all
solutions of the quartic equation (hence the title of the paper [6])

D = a3a% — 3ata; + 4apa; + 4aias — 6agaiazas

3
) = B?> — 4AC

in integers ag,aj,ap,as. Note that the discriminant D of g is related to the
discriminant 6(F) of F (as in [12, Chap. V, §9]) by

4) §(F) = —27D.

Eisenstein observes that from one solution of (3) one can obtain infinitely
many solutions by taking its translations under the action of SL,(Z). The
orbits of this action are the essentially different solutions to (3).

He states without proof in [6] that if D = 4d with d square-free, and g(x)
is a primitive quadratic form of discriminant D, then there exists a cubic form
F as in (2) such that gr = g if and only if “the triplication of g(x) gives the
principal class”, that is, if and only if g(x) is an element of 3-torsion in the
class group of binary quadratic forms of discriminant D. He also asserts that
when ¢(x) is an element of 3-torsion, there is only one class of cubic forms
F with qr = q. The latter assertion turned out not to be completely correct as
stated when D > 0, for in this case there are in fact three nonequivalent cubic
forms F with gr = g (see Example 7.2). This was noticed by Arndt [1],
Pepin [13], Cayley [3] and Hermite [8].

In a second paper [7], Eisenstein proves his assertions for the case when
D = —4p, where p a positive prime congruent to 3 mod 4. A key point in
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Eisenstein’s proofs of these results is a syzygy that he found connecting the
fundamental covariants of a binary cubic form F. Let

1| 0F/0x, OF/0x,
(5) GF(X)—E 8qp/6x1 8qp/8x2 ‘

One has the polynomial identity (essentially in [7, §5]) relating F, gr and Gr :
(6) 49r(x)’ = Gr(x)* ~ DF(x)" ,

where D is the discriminant of gp. It is worth noting that the graded ring of
covariants of binary cubic forms (over a field of characteristic 0) is generated
by F, gr, D, Gr and that (6) generates the ideal of relations among these
(cf. [15, 3.4.3]).

Let Tr and Tg, be the symmetric trilinear forms such that
Tr(x,X,X) = F(x) and T (X,X,X) = Gr(X)

(note that the middle coefficients of F and Gr are divisible by 3). One verifies
the identity, equivalent to (6),

(7) 4qr(X)qr(yY)qr(@) = Tsp(x,y,2)* — DTr(x,y,2)".

Suppose now that gr is primitive (i.e., the GCD of its coefficients is 1).
Assume also that D = 4d for an integer d # 0. Since the form X? — dY? is
the unit element in the group of primitive quadratic forms of discriminant D,
the identity (7) shows that gz is an element of 3-torsion for composition of
quadratic forms. To see this it is enough to divide by 4 throughout in (7),
observing that T, will have integer coefficients, all divisible by 2 since D
is a multiple of 4. A similar argument can be given when D = 1 (mod 4) (or
see Proposition 5.9 for a general statement).

In this paper, we generalize Eisenstein’s theory to cubic forms over any
integral domain R of characteristic not 2 or 3. In order to extend Eisenstein’s
determining form (2) to the case of projective, not necessarily free, R-modules
we need to allow quadratic forms with values in arbitrary projective R-modules
of rank one. Thus Kneser’s theory of binary quadratic mappings [11] provides
the appropriate setting.

In Section 2 we explain Kneser’s Clifford algebra description of the
composition law for binary quadratic forms and mappings. We restate some
of his results and give a natural interpretation in flat cohomology of his

exact sequence relating the class groups of binary quadratic forms and binary
quadratic mappings.
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In Section 3 we generalize Eisenstein’s notion of determining form to any
integral domain R of characteristic not 2 or 3 and introduce the concept of
a cubic C-form that plays a central role in the rest of the paper.

In Section 4 we use a natural Lie algebra representation to characterize
the cubic C-forms (Theorem 4.5). This allows us to use the formalism of
derivations.

In Section 5 we give necessary and sufficient conditions on a module M to
admit cubic C-forms F with primitive determining mapping and we classify
these forms (Theorem 5.1 and Theorem 5.2). These results are roughly the
analogues of Eisenstein’s theorems. We also discuss the relation between the
notions of C-equivalence and ordinary (R-) equivalence and give an application
to counting cubic forms over finite fields.

In the special case where R is a PID, we obtain a statement (Theorem 5.10)
that closely parallels Eisenstein’s theory. These results were known, modulo
language, to Eisenstein [6] and [7], Arndt [1], Pepin [13], Cayley [3] and
Hermite [8] in the case where R = Z. The more specific classical results over
Z. concerning class numbers are deduced in Corollaries 5.11 and 5.12.

The main result for PID’s (Theorem 5.10) can be summarized as follows:
Let ¢ = ax?+bxyxp+cx3 be a primitive quadratic form with D = b*—4ac # 0.
Let C = C*(q) be the even Clifford algebra of g and let 7 € C be such
that 72 = D. Then there ‘exists a cubic form F(x) in the shape of (1), with
a; € R such that gr = g (gr as in (2)) if and only if the triplication of
g in the sense of composition is trivial. Furthermore, when this condition is
satisfied, the cubic forms in the fiber of the map F +— gr above g can be
written uniquely as F' = aF + bGp, where F is a fixed form with gr = g,
the form Gf is the cubic covariant defined in (5), and the coefficients a and
b are in the field of fractions of R and are such that a + b7 is a unit of C
satisfying!) a? —Db? = 1. The SL,(R) -equivalence class of F’ is determined
uniquely by the class of a + b7 in C*/C x3

In Section 6, we show that the flat cohomology group H(Spec C,pus) acts
simply transitively on the set of isomorphism classes of cubic C-forms with
primitive determining mapping (Theorem 6.1). We also show that the main
classification theorem of Section 5 can be interpreted in terms of a Kummer
exact sequence in flat cohomology.

In Section 7 we show how to represent C-forms as scaled cubic trace
forms and give applications to explicit computations over Z.

1) In fact, defining F' = aF + bGp for arbitrary a and b, one has the identity
qp = (a® — Db?) g, which was apparently discovered by Hermite (see his letter to Cayley, [8])

4
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A final remark: Gauss’ theory of binary quadratic forms led to two major
developments : the theory of number fields on the one hand, and the theory
of quadratic forms in more than two variables on the other. The arithmetic
of forms of higher degree over Z seems to have been largely neglected. In
modern times Shintani revived interest in the arithmetic of cubic forms by
introducing a family of Dirichlet series that depend on class numbers of cubic
forms, and have good analytic properties (analytic continuation and functional
equations). This work has been reinterpreted in the language of adeles by
Wright [16]. For a general introduction to arithmetic problems concerning
forms of higher degree, see [9].

We would like to thank J. Hurrelbrink and S. Weintraub for helpful
discussions concerning this work.
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2. BINARY QUADRATIC MAPPINGS

We shall assume throughout this section that the ground ring R is an integral
domain of characteristic not 2. The fraction field of R will be denoted by K.

A binary quadratic form is a pair (M,q) such that M is a projective
R-module of rank two and g: M — R is a mapping such that g(ax) = a?q(x),
a€c€ R, x &€ M, and such that b(x,y) := gX +y) — g(x) — g(x) is R-bilinear.
The form q is said to be primitive if the ideal generated by q(M) is R.
A mo/rphism (M,q) — (M',q") is an R-linear mapping f: M — M’ such that
g=¢q of.If M =R? is the free module, we will often omit reference to M.

P i L T L
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Let C be a quadratic R-algebra in the sense of [11], that is, an R-algebra,
which as an R-module is projective of rank two, and such that R1 C C is a
direct factor of C as R-modules. Locally over Spec R, such an algebra C is
isomorphic with an algebra of the form

R[#]/(t* + bt + ©), (b,c €R).

Let n: C = R and t: C — R be the norm and the trace maps of C. It
is easy to see that C possesses a unique nontrivial R-automorphism x — X
satisfying #(x) =x+X and n(x) = xx.

When R = Z, for each nonzero integer D = 0 or 1 (mod 4), we shall
denote by Cp the unique quadratic Z-algebra of discriminant D.

The notion of a form of type C was introduced by Kneser [11] and will
play an important role in this paper.

DEFINITION 2.1. Let M be a projective C-module of rank 1. We say that
a quadratic form g: M — R is of type C if it satisfies

(®) g(cx) = n(c)q(x)

forall x e M, c € C. A C-morphism (M, q) — (M’,q’) is a C-linear mapping
f: M — M' such that g=¢q' of.

Recall that the Clifford algebra C(M, g) is the quotient of the tensor algebra
Tr(M) by the ideal generated by x®x—g(x)1 for all x € M. The even Clifford
algebra, Ct(M, q), is the subalgebra generated by tensors of even degree, and
is easily seen to be a quadratic R-algebra. Also, M is identified with the odd
part of the Clifford algebra (i.e., generated by tensors of odd degree), and
the map CT(M,q) x M — M induced by multiplication in C(M,q) makes
M into a CT(M, g)-module. The formation of the Clifford algebra commutes
with localization on SpecR.

In the special case when M = R* we can describe C*(M,q) explicitly:
Let {e;, e;} be a basis of R? relative to which g = ax} + bxix; + cx3.
Then €2 =a, €2 =c, eje; +eze; = b in the Clifford algebra of g. Thus if
w = —eje; we have

CT(g) = Rlw] = R[x]}/(x* + bx + ac) .
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PROPOSITION 2.2 ([11, Proposition 1}).

1. Let (M,q) be a primitive quadratic form and C = Ct(M,q) its even
Clifford algebra. Then M becomes a projective C-module of rank one, and
(M, q) is a quadratic form of type C.

2. Let C be a quadratic R-algebra and (M,q) be a nonzero quadratic
form of type C. Then there exists a unique homomorphism of R-algebras

¢: CT(M,q) — C

satisfying ¢(w)Xx = ux for u € Ct(M,q) and x € M. Furthermore, ¢ is an
isomorphism if and only if q is primitive.

If g is a binary form over Z of discriminant D, then C*(M,q) is the
unique quadratic algebra Cp over Z of discriminant D. If moreover g is
primitive, then g is of type Cp. Thus all the primitive forms of discriminant
D are of type Cp.

Kneser showed [11, Theorem 3] that the set G(C) of primitive binary
forms of type C modulo C-isomorphism forms a group for composition,
which generalizes Gauss’ theory for binary quadratic forms over Z. The
group law on G(C) is explicitly given as follows: The composition of (M, q)
and (M',q") is the form (M ®c M, q"), where ¢"(x ® y) = q(x)q'(y). The
neutral element is clearly (C,n).

The relation between C-isomorphism and R-isomorphism of quadratic forms
is explained by the following proposition. Recall that an algebra over a field
is étale if it is a product of separable extension fields of that field.

PROPOSITION 2.3. Let C be a quadratic R-algebra, and suppose that
C®K is an étale K-algebra. Let (M,q) and (M',q’) be nonzero quadratic
forms of type C. Then every R-isomorphism f: (M,q) — (M',q") is either
C-linear or C-sesquilinear.

Proof. By extending scalars to K, it will suffice to prove our proposition
for the case when R = K. The map f will induce an isomorphism of the
even Clifford algebras CT(M, q) — CT(M’,g). These algebras are canonically
1isomorphic with C by Proposition 2.2, and hence f induces an automorphism
f« of the K-algebra C satisfying f(cx) = fi(c)f(x). By hypothesis C is an
etale algebra over K, so its only K-automorphisms are the identity and the

canonical conjugation. Thus fi(c) is either ¢ or ¢ for all ¢ € C, which
completes the proof. [
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Note that the proposition is false if C ® K is not étale, as can be easily
seen by taking C = R[¢]/(t*) with the norm form.

Let (M, q) be a nonzero binary quadratic form over R. Suppose that it is
of type C, and let C; be the subgroup of the units of C with n(c) = 1.
Then we obtain a natural homomorphism (/. = multiplication by ¢ in M):

C; — SOWM, q)

cr— 1,

©)

where SO(M, q) C Autg(M) is the subgroup of R-automorphisms fixing g
and having determinant 1.

COROLLARY 2.4. With the above hypotheses, and assuming that C @ K
is an étale K-algebra, the map (9) is an isomorphism.

Proof. Since M is projective of rank one over C, the map ¢ — [, is an
isomorphism C =~ End¢(M) ; thus it is enough to show that the elements of
SO(M, g) are C-linear.

Let f € SO(M, g). It is sufficient to show the C-linearity of f locally; so
we may assume M = C and g = an with a € C*.

The canonical conjugation o of C preserves g and has determinant —1.
Suppose now that f is C-sesquilinear. Then fo is C-linear, i.e. fo = [, for
some ¢ € C* which must satisfy n(c) = det(l.) = 1, since [, preserves q.
Thus det(f) = —1, contrary to our hypothesis. Hence, by Proposition 2.3, the
map f must be C-linear.  []

To define an analogue of Eisenstein’s determining form (2) for general
rings, we shall need the more general notion of binary quadratic mapping.

A binary-quadratic mapping over R is a triple (M,q,N) where M is
a projective R-module of rank two, N is a projective R-module of rank
one and g: M — N is a map such that g(ax) = a?q(x) and b(x,y) =
qg(x +y) — g(x) — g(y) is R-bilinear.

A morphism (M,q,N) — (M',q',N’) is a pair (f,g) of R-linear maps

fM—-M and g:N— N’

such that g'f = gq. We say that (M, q,N) is primitive if Rg(M) = N.If N is
free over R, then choosing a basis n of N we can write g(x) = Q(x)n. Then
(M, Q) is a quadratic form in the previous sense. Note however that in this
case (M, q,N) is isomorphic to (M’,q’,N’) as quadratic mappings if and only
if there exists a unit u € R* such that (M, Q) ~ (M’, uQ’) as quadratic forms.
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Hence we can think of a quadratic mapping over R as defining a family of
quadratic forms up to similarity equivalence, locally on a covering of SpecR,
and glued together in an obvious sense.

In the case R = Z every projective module is free, so that a quadratic
mapping in this case is the same thing as a quadratic form, but up to similarity
equivalence as above. This differs therefore from the usual theory, based
on SL,(Z)-equivalence, but this difference is easily accounted for (see the
discussion for PIDs in Section 5).

Let C be a quadratic algebra and assume that M is a projective C-module
of rank 1. A quadratic mapping (M,q,N) is of type C if g satisfies the
identity (8).

In order to have an analogue of Proposition 2.2 we need a definition of
the even Clifford algebra in the context of quadratic mappings. The (total)
Clifford algebra of a quadratic mapping (as opposed to a quadratic form)
cannot be defined. The reason is that the Clifford algebra is not a functor for
similarities of quadratic forms. As Kneser observed, the even Clifford algebra
is a functor for similarities of quadratic forms. We can define directly the
even Clifford algebra for quadratic mappings as follows:

DEFINITION 2.5. Let (M, q,N) be a quadratic mapping. The even Clifford
algebra C*T(M,q,N) is the quotient of the tensor algebra
TRIN* @M @ M),
where N* = Homg(N,R), by the ideal generated by

A®X QX — A(g(x))
ARXxRY)Qu®Y®Z)—Ag(y) t xRz

(A, u €N*, x,y,2€ M).

(10)

One verifies easily that the above definition depends‘ only on the isomor-
phism class of (M, g, N). For a similar construction, see [10, Ch. II, Section 8].
Note that the second defining relation can also be written as

ARXQY)@UBY®RZ) — ugy) \@x®z.

This is because A\(u)u(v) = A(v)u(u) on N since the difference is an alternating
bilinear form, which must vanish since N has rank 1. We also need to define
a C*(M,q,N)-module structure on M ; this is not completely obvious since
the total Clifford algebra is no longer available. We begin with a lemma:
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LEMMA 2.6. Let Q be a quadratic form on M and let B be the associated
bilinear form. Then

B(x,y)z — B(z,x)y + B(y,z)x = 0 (mod 2M)
for all x,y,ze M.

Proof. Let C be the Clifford algebra of Q. The expression
(11) > sign(0)Xp1X02%03
g

where o runs over all permutations of {1,2,3}, defines an alternating
R-trilinear map M3?® — C. Since M has rank 2 over R, we have A°M =0,
thus the expression (11) is identically zero. The lemma follows from the
identity x;X; + X;X; = B(X;,X;) in the Clifford algebra. [

We can now define a CT(M, g, N)-module structure on M as follows:
(12) A®x®Y) - 2= 5[AbX, )z — Ab(z,X))y + Mb(y,2))X] .

Note that dividing by 2 in (12) makes sense in M by virtue of Lemma 2.6
applied to Q = Aog, B = Aob, and the fact that R is an integral domain
of characteristic not 2. To see that this is a well-defined module we need:

LEMMA 2.7. The definition (12) is compatible with the defining relations
(10) for CT(M,q,N).

Proof. This is straightforward for the first relation. For the second relation
of (10), we can, without loss of generality, extend scalars from R to its fraction
field K. We prove that the second relation vanishes when applied to an element
w € M. If the vectors z and y are linearly dependent, say z = ay for a € K,
then the second relation is a consequence of the first, so we may assume that
z and y are linearly independent. In this case it is enough to consider the
subcases (a) w =y, (b) w =z, since now y, z forms a basis of M. The case
(b) is easily seen by direct computation of both sides. In case (a), applying
A®xRy)®(L®Yy®zZ) to y, we get

L 2ub(y, 2) Ab(y, ¥)x — pb(y, 1)) Mb(X, ¥)) 2
+ u(d(y, y)) Mb(z, X))y — ub(y, y)) Mb(y, 2))X) .

In the last three terms in this formula, we may exchange A and pu, using the
identity A(w)u(v) = A(v)p(u). The expression then reduces to

IXNg) (u(b(x, 2))y — p(b(y, X))z + w(b(z, ¥)) X)
which is exactly the proposed identity. [
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It is important to note that in the case of a quadratic form, as opposed to
1 quadratic mapping, (12) really defines the usual module structure given by
multiplication in the Clifford algebra of the form. Namely, the expression in
(12) equals x ® y ® z in that algebra. We leave this verification to the reader
(hint: use (11) and the fact that x@y®z =2z ®y ®x in the Clifford algebra
of a binary quadratic form).

Locally on Spec(R), where both M and N are free, the choice of
trivializations of these modules reduces a quadratic mapping to a quadratic
form well-defined up to scalar multiples by a local unit. The even Clifford
algebra as we have defined it is isomorphic on this open set to the Clifford
algebra of this quadratic form, and the module structure as we have defined
it coincides with the module structure given by multiplication in the Clifford
algebra of the locally defined form. In fact, we can define the even Clifford
algebra and the module structure by taking these locally defined objects and
gluing them together, which provides an alternative construction.

Here is the analogue of Proposition 2.2 for quadratic mappings :

PROPOSITION 2.8.
1. If (M,q,N) is primitive, then M is a projective C = Ct(M,q,N)-
module of rank one and q is of type C.

2. Let (M,q,N) be a nonzero quadratic mapping of type C, and
let CY(M,q,N) be its even Clifford algebra. Then there exists a unique
homomorphism of R-algebras ¢: C*(M,q,N) — C satisfying ¢(u)x = ux for
ue Ct(M,q,N) and x € M. Furthermore, ¢ is an isomorphism if and only
if q is primitive.

We shall omit the proof, since it is essentially rephrasing the proof given
in [11, Proposition 1].

REMARK 2.9. Proposition 2.3 also holds for quadratic méppings. This can
be easily seen by extending the scalars to K.

M. Kneser [11, Section 6] shows that the set H (C) of isomorphism classes
of primitive binary quadratic mappings (M, g, N) of type C forms a group for
composition, the neutral element being (C,n,R). Note that the equivalence
relation here is C-equivalence: an isomorphism is a pair (f,g) as before, but
with f a C-linear isomorphism. He also showed that H(C) is isomorphic to
the group Pic(C) via the canonical map (M, g, N) — M.
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We compare the group G(C) of C-isomorphism classes of primitive
quadratic forms of type C and the group H(C) above by means of the
canonical group homomorphism G(C) — H(C) induced by the correspondence
M,q) — (M,q,R). M. Kneser (op. cit.) showed that this map fits into an
exact sequence

(13) 0 — R* /n(C*) — G(C) — H(C) - Pic(R).

In the classical case of a quadratic Z-algebra C of discriminant D, the
sequence (13) was essentially known to Dedekind. Since Pic(Z) = O and
Z* = {x1}, the sequence (13) shows that the group G(C) is the narrow
class group of C if D >0, and it is {£1}x the class group of C if D <0
(the sign corresponding to positive and negative definite forms). In either case,
it differs from the ideal class group Pic(C) at most by a cyclic factor of
order 2.

It is worth noticing that the exact sequence above has a natural interpretation
in flat cohomology. Let 7: Spec C — Spec R be the natural morphism. Let
G = Aute(C,n) and H = Autc(C,n,R) as group schemes over Spec R. One
sees immediately that H = m.G,, where G, is the multiplicative group
scheme, and that G is the kernel of the norm map n: 7.G,, — G,,. From
the short exact sequence of group schemes over Spec R

0— G H— G, — 0,
we obtain the long exact sequence (see [14, Chap. III, §4])
0 — R*/n(C*) — H(SpecR,G) — Hi(SpecR, H) 5 Hy(Spec R, G),

where the flat topology is understood. The group G(C) [respectively H(C)] can
be identified with H}(SpecR,§) [respectively Hg(Spec R, H)] by interpreting
quadratic forms [respectively quadratic mappings] as torsors for G [respectively
H] in the flat topology.

Note that there is a natural isomorphism

H}(Spec R, 7, Gp) = Hy(Spec C, Gy ,

so we also have H(C) = Pic(C) (compare [11, Proposition 2]).
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3. CUBIC FORMS

We shall assume henceforth that the ground ring R is an integral domain
of characteristic not dividing 6. The field of fractions of R will be denoted
by K as previously.

Let M be a projective R-module of rank 2, and let M™ = Homgz(M, R)
be its dual. Consider the symmetric algebra

Sym x(M*) = P Sym z(M") .

In this paper, a binary n-form is a pair (M,F), where M is a projective
R-module of rank 2, and F € SymR(M*). A morphism (M,F) — (M',F’) is
an R-linear map ¢: M — M’ such that F'¢p = F.

DEFINITION 3.1. An element F € Symx(M™*) will be called a Gaussian
n-form if there is a symmetric n-linear form 7: M X --- Xx M — R with

Fx)=T(,...,X).

The set of Gaussian n-forms is a submodule of Sym p(M*) and will
be denoted by S*(M*). The module Sym"(M*) is projective of rank n + 1
over R. If no binomial symbol (7) is zero in R for 0 < i < n, then
S"(M™) is also a projective R-module of rank n+ 1. If each of these binomial
symbols is invertible in R then S"(M*) = Symjx(M*). Note that for any
R-homomorphism M — M’, the induced map Symj(M’'") — Sym{(M*)
sends S"(M'™) to SM(M™).

In this section we shall concentrate on binary cubic forms (n = 3). Unless
otherwise stated all the binary cubic forms we shall consider are assumed to
be Gaussian forms.

Let F € S3(M*) and let T be the symmetric trilinear form such that
F(x) = T(x,x,x). For fixed x € M we consider the homomorphism

Ty: M — M*
y—lz—T(x,y,2)].

Applying the second alternating power functor A*> we get a homomorphism
ATy N2 M — NPM*
thus an element of D(M) := Homg(A? M, A2 M*). We define

| (14) gr(x) == N* T, .
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It i1s immediate from the definitions that
(15) (M, gr, D(M))

is a binary quadratic mapping in the sense of Section 2. It is also evident
that if (M, F) is isomorphic to (M’, F'), then (M, gr, D(M)) is isomorphic to
(M,) qr’, D(Ml))

DEFINITION 3.2. The quadratic mapping (M, gr, D(M)) is called the
determining mapping of (M, F).

By abuse of language, we shall refer sometimes to gr as the determining
mapping of F, without referring explicitly to the underlying modules M and
DM).

Over any open subset of Spec R where M is free, the choice of a local
basis m = {m;, my} of M allows us to write

(16) F(X) = apx; + 3a1xix; + 3ax1x + asx;

where x = x;m; +x,m;. Let m* = {m], mj} be the dual basis of M*. An
easy computation gives

Tx(my) = (apx; + a1x2) M + (a1x; + azxz) m;
Ty(my) = (ayx; + axxx) mi + (axx; + azx;) m; .

In the bases m; Amy for A2M and —m} A m} for A*M* (note the sign
change), the determining form gr is given by

(x) = apx) + ayxy aipxy + ayxp
(17) I a;x; + azxy  azx; + asxp

= (a} — apa)%} + (@mar — apaz)xi1x + (a5 — aras)x;
which shows that (15) coincides locally with Eisenstein’s determining form (2).

Now let C be a quadratic R-algebra as in Section 2 and let M be a
projective C-module of rank one.

DEFINITION 3.3. Let F € S°(M*) and let T be the symmetric trilinear
form associated to F. We will say that F is a C-form if T(cx,y,z) is
symmetric in x,y,z for any c € C.
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REMARK 3.4. The above definition makes sense for forms in S™(M™*) for
any n. In particular, one has the notion of a quadratic C-form. This should
not be confused with the concept of a quadratic form of type C. Indeed, it is
easy to see that a quadratic form g is of type C if and only if the symmetric
bilinear form b attached attached to g satisfies b(cx,y) = b(X,cCy) ; whereas
the condition for a C-form reads b(cx,y) = b(x, cy).

We will use throughout the notation
ME =MOMSM, MP=MSrMrM.

Note that there is a natural epimorphism of R-modules p: M$> — M?S.
We have the following characterization of C-forms:

LEMMA 3.5. Let F € S*(M*) and let T be the associated symmetric
R-trilinear form, viewed as a linear form on M}‘§3. Then F is a C-form if
and only if there exists a linear map \: M?3 — R such that T = X op.
Furthermore, the map X\ is unique.

Proof. It is enough to prove the lemma locally, so we assume that M is
free over C.

Let A: M?3 — R be an R-homomorphism. Write M = Cm for some
mecM and let X=cym, y=c,m, z=c3m with ¢; € C.

Then Tx ®y ® z) = Acicze3(m @ m ® m)) is visibly symmetric and
satisfies the condition of Definition 3.3.

Conversely, if T(cx,y,z) is symmetric then in particular 7T itself is
symmetric (¢ = 1), and hence

T(cx,y,z) =T(x,cy,z) = T(X,y,cZ),

showing the existence of A. Uniqueness follows from the fact that p is
onto. [

Let S2(M*) C S*(M*) be the submodule of cubic C-forms on M. Note
that the lemma above can be summarized by saying that the map

Homg(ME?, R) — S2(M™)
A= X A X QX ® X)]

(18)

is an isomorphism of R-modules.
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On the other hand, we also have

LEMMA 3.6. Let L be any projective C-module of finite rank. Then the
map
HOmc(L, C*) E— HomR(L, R)
fr— &= f(x)(1)

is an isomorphism of C-modules (the dual P* = Homg(P,R) is made into a
C-module by setting (c\)(x) = A(cx) for A € P*).

(19)

Proof. By localization, it is sufficient to prove the lemma when L = C,
in which case the map is the identity. [

Combining the isomorphisms (18) and (19) with L = M®?, we obtain

PROPOSITION 3.7. The map
Homc(M2?, C*) — Se(M*)
¢— [Fp:x— d(XQxQ@x)(1)]

is an isomorphism of R-modules.

(20)

Using the isomorphism (20) we give S3C(M *) the C-module structure so
that this bijection becomes a C-module isomorphism. Note that

T4(x,y,2) == o(x @y @ z)(1)

is the symmetric trilinear form attached to F4. Hence the C-module structure
on S3(M*) is given explicitly by

2D (cF)(x) = T(cx,Xx,X).

LEMMA 3.8. C* is an invertible C-module.

Proof. Locally over Spec R, we have C = R[w] = R[x)/(x*+bx-+c). Then
the R-module C* is freely generated by \;, Ay, where A\ (1) =1, A\{(w) =0,
A (1) =0, A(w) = 1. One sees that wA, = A\; — bA,, so that X\, is a local
C-module basis of C*. [

By virtue of (20) and this lemma, S%(M *) is an invertible C-module.

In the next section we will give alternate characterizations of the cubic
C-forms on M, related to their determining mapping.
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4. A LIE ALGEBRA REPRESENTATION

Let M be a projective R-module of rank two. Let G = Autg(M) and let
g = Endgr(M) viewed as a Lie algebra over R.
The group G acts on the right on Sym ,(M*) by algebra automorphisms
via
(Fo)(x) = F(ox)
for F € Symgx(M*) and o € G. Taking the formal derivative at the origin of

the associated map
G — Autg_g(Sym g(M™))

we get a representation of Lie algebras
(22) p: g — Derg(Sym x(M™)).

The action of G preserves the homogeneous components Sym (M*) and also
the submodule S*(M*) of Gaussian forms. The same is true for the Lie algebra
action of g.

We shall compute the action of g on S*(M™) explicitly:

LEMMA 4.1. Let F € S"(M*) and let T be the associated n-linear form.
Then

p(g)(F)(X> - i’lT(gX,X, 2 = ,X)
for all g € g.

Proof. To compute the derivative of G — Autg(S"(M*)), we extend the
scalars to the “dual numbers” R[e]/ (e?). Using the symmetry of T we have

F((1 + ge)x) = F(x) + nT(gx,X,...,X)€,

which proves our assertion. [

Let C/R be a quadratic algebra in the sense of Section 2 and let M be
an invertible C-module. Then we have a natural map C — Endgz(M) and we
can restrict the representation p to C. Note that when R is a field and C

is an étale quadratic algebra then the image of C is a Cartan subalgebra b
of g.

Comparing (22) with equation (21), we see that the C-module structure
on S&(M*) is related to the Lie algebra action by

(23) cF = 3p(c)F.

We will make this explicit in a special case that we need:
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LEMMA 4.2. Let F € S*(M*) be a binary cubic form over a field K of
characteristic not 2 or 3. Let qr be its determining form, and C = C*(qr)
its even Clifford algebra. Let x;1, x, be coordinates on the vector space M
with respect to a basis mi,m,. Let

T =mm; —mym; € C=Ct(gr).

Note that 7> = D is the discriminant of qr. Then
6qp 0 86]1? 0
8)62 6x1 5)61 sz ’

p(T) =
acting on forms of any degree.

Proof. As we have seen,
qr(xjm; + x,my) = Px% + Ox1xy + Rx% ,
where P = a? — qpay, Q = aja; — apas, and R = a% — aja;. By direct
computation in the Clifford algebra C, we see that
™m; = Om; — 2Pm,
Tm, = 2Rm; — Om, .

Since p(c) is a derivation of Sym x(M™*), we have

9, 0
p(c) = P(C)(xl)a—xl -+ P(C)(xz)'é;; ,

Thus 7(x;ym; + x,my) = (Ox; + 2Rx)my; — (2Px; + Ox;)m,, which gives
p(T)(x1) = Oqr/Ox; and p(T)(xz) = —0qp/Ox;. [

COROLLARY 4.3. p(7)gr =0 and
8F/6x1 (9F/8x2
F =
(24) p(T) 5‘qp/3x1 (9qp/8x2
- 3GF 3

where Gr is as in (5).

REMARK 4.4. If we further assume that C 1is an étale algebra, then as we
have remarked, p maps C onto a Cartan subalgebra of Endgx(M) ~ gl(2, K).
This algebra decomposes as

he =3 @ be
where the first factor is the center, consisting of scalar matrices, and the second
factor is the intersection hc M sl(2, K), consisting of matrices of trace 0. As

the formulas in the proof of the preceding lemma show that 7 acts on M
with trace 0, we see that h,. = K7.
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THEOREM 4.5. Let C/R be a quadratic algebra such that CQK is étale
over K. Let M be a projective rank-one C-module and let F € S>(M*) be
such that the determining mapping qr is not 0. Then the following conditions
are equivalent :

(a) F is a C-form
(b) (M,qr, D)) is of type C
(c) p(c)p(©)F =9n(c)F for all c € C.
Proof. (a)=>(b). If T is the trilinear form attached to F, then, using the
symmetry of T(cX,y,z), we have
qr(cX) = A2 T(cx, —, —)
= N2 (T(x,c—, —))
= n(c) N* (T(x,—, —))
= n(c)gr(x) ,
which proves the claim. In fact, this implication does not depend on C ® K

being étale.

It is enough to prove the theorem for the case where R = K is a separably
closed field. We can assume in this case C = K[o] with o satisfying or=1.
We will make these assumptions for the rest of the proof.

(b)=>(c). Let {m;,my} be a basis of M over K with om; = m; and
om, = —m,. With respect to this basis, the form gr, being of type C, must
have the shape

qF(X) = oxyxp,

where o # 0. To see that this is so, note that because gr is of type C, we

have gr(om;) = n(o)gr(m;) = —gp(m;), which shows that gp(m;) = O.
One sees similarly that gr(m;) = 0. Then the coefficients of F(x) =
aox? - 3a1x%x2 + 3a2x1x% + a3x§ satisfy the relations: a% — apay, = 0,

aja; —apas = @ and a5 —ajaz = 0. Since « # 0, it follows at once that
ay =a; =0, so F is of the form F(x) = Ax; + px3. Since gr # O (in fact
nondegenerate under the étaleness hypothesis), the algebra C can be identified
with the even Clifford algebra C*(M,qr, D(M)) by Proposition 2.8. Under
that identification we have 7 = o, where 7 is defined as in Lemma 4.2. From
that lemma we get p(0) = x;0/0x; — x,0/0x,, which can be seen directly,
since both sides agree on x;, x,. Hence p(a)(xi’“ix"z) = @3- 2i)xi’—ixé. In
particular, for F(x) = Ax} + px3 we have

p(0)p(F)F = —p(0)*F = —9F = 9n(0)F .
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The more general identity p(c)p(c)F = 9n(c)F for ¢ € C follows from this
particular case by noting that, from Lemma 4.1, p(1)F = 3F.

(c)=>(a). Suppose that p(¢)*F = 9F. Then F must have the form F =
Ax3 + px3 . This is because, as we saw in the discussion above, the monomials
x?"ixé are eigenvectors for the operator p(o)? with eigenvalue (3 —2i)?, which
equals 9 only for i = 0 and i = 3. Hence the associated trilinear form is
T(x,y,2z) = Axyi1z1 + pxoyaz2. Thus T(oX,y,z) = Axy1z1 — pxzy222, which

is visibly symmetric in x,y,z. [

REMARK 4.6. It is interesting to notice that the syzygy (6) can be
recovered from Part (c) of Theorem 4.5. Assume for simplicity that R = K
is a field and C is an étale K-algebra. Let {m;,m,} be a basis of
M. let 7 = mm, —mmm; € C = CV(gr) as in Lemma 4.2. As
we noted in Remark 4.4, 7 generates the trace O part of the Cartan
subalgebra defined by C. Using the derivation property and Corollary 4.3, we
see p(T)(G% — DF?) = (2/3)(p(T)*F — 9DF)Gr. From the above theorem,
o(T)’F = 9DF, so this is 0. On the other hand, p(t)gr = 0, also by
Corollary 4.3, which implies that p(7)q> = 0. Hence both g3 and G% — DF?
lie in the subspace on weight O (for the action of the Cartan subalgebra
he C sl(2, K)) of SO(M*). As SS(M*) is an irreducible representation of
sl(2, K), this is one-dimensional. Hence g> and G% — DpF? differ by a
constant multiple. A priori, this constant could depend on F (e.g., D). That
this is not so can be seen by noting that both sides are of the same degree
in the coefficients of F.

COROLLARY 4.7. Let M be a projective R-module of rank 2, and let
F e S(M*).
(i) Let C = Ct(M,qr, D(M)) and suppose that C ® K is étale, and that
qr is primitive. Then F is a C-form.
(i) If F is a C-form for a quadratic R-algebra C and (M,qr, D(M)) is
primitive, then C = CT(M, qr, D(M)).

Proof. (i) By Proposition 2.8, (M, qgr, D(M)) is of type C. We conclude
by Theorem 4.5.

(i) If F is a C-form, then by Theorem 4.5, the quadratic mapping
(M, gr, D(M)) is type C. But assuming furthermore that (M, gr, D(M)) is
primitive, we see that C is isomorphic with Ct(M, qr, D(M)) by Proposi-
tion 2.8. [J
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LEMMA 4.8. Suppose that C ® K is étale over K and let (M, F) and
(M',F') be cubic C-forms. Assume that the determining mappings qr,qr’
are nonzero. Then every R-linear isomorphism f: (M, F) — (M',F") is either
C-linear or C-sesquilinear.

Proof. The map f will induce an isomorphism of determining quadratic
mappings of type C. We conclude by Proposition 2.3. [

5. STRUCTURE OF THE CUBIC C-FORMS

We shall describe below the C-module structure of S3C(M *) and the
corresponding C-isomorphism classes.

THEOREM 5.1. Let M be a rank-one projective C-module. For each
¢ € Homc(M23,C*) we define a cubic form by Fy(x) = ¢(x ® x ® x)(1).
Then

(i) The correspondence ¢ +— Fg is an isomorphism of C-modules
Homc(ME?, C*) — SL(M™).

(i) The determining mapping qr, is primitive if and only if ¢ is an
isomorphism.

(i) Two cubic C-forms F and Fy on M are equivalent over C if and only
if there exists ¢ € C* such that F; = >F.

Proof. (i) This is a restatement of Proposition 3.7. The map ¢ — Fy is
a C-isomorphism by definition of the structure of C-module on S3(M*) in
Section 3.

(1) It is enough to prove our assertion locally, so we assume that M is
free over C. Write M = Cm for some m € M. Let A = ¢(m@m®m). Then
we have ¢(xm @ ym ® zm) = A(xyz). Let S(ym,zm) = A(yz) and observe that
A is a basis of C* over C if and only if the symmetric bilinear form (3 is
unimodular. We have

gr,(xm) = n(x)qr, (m)
= n(x) \* B.

It follows from this equality that gr, is primitive if and only if 8 is unimodular,
that is, if and only if ¢ is an isomorphism.
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(ii1) Let F and F; be cubic C-forms on M. Suppose that they are
C-1somorphic. Then there exists ¢ € C* such that F; = Fol.. Let T be the
symmetric trilinear form associated to F. Since T(cX,cy,cz) = T(c’x,y,z),
we get F; = c3F. Conversely, if F; = ¢’F we may reverse these steps to
conclude that F; = Fol. []

We shall henceforth denote by Cubicc(M) the set of C-isomorphism classes
of cubic C-forms on M with primitive determining mapping. Recall that when
M 1s an invertible C-module, there is a unique primitive quadratic mapping
(M,q,N) of type C on M ([11]). If F € Cubicc(M), then necessarily

(M, qr, D(M)) = (M, q,N) in H(C), and C=C"(M,qr, DM)),

by Corollary 4.7 (i1) ; in particular, all members of Cubicc(M) have isomorphic
determining mappings.

THEOREM 5.2. Let M be a projective C-module of rank one.
(1) The set Cubicc(M) is nonempty if and only if 3[M] = [C*] in Pic(C).
(i) If 3[M] = [C*] in Pic(C), then the group CX/C><3 acts simply
transitively on the set Cubicc(M).

Proof. (i) By Part (ii) of Theorem 5.1, the module M admits a cubic
C-form with primitive determining mapping if and only if there is an
isomorphism Mz — C*.

(i1) Since M?3 and C* are invertible C-modules, IsomC(Mg?g‘, C*) is
either empty or it is a torsor for C* (i.e., a simply transitive C*-set). It is
nonempty if and only if Cubicc(M) is nonempty, by Part (i). Suppose this is
s0, and choose an isomorphism ¢: M% — C*. Each cubic C-form on M with
primitive determining mapping is uniquely of the shape F.4 with ¢ € C* by
Parts (i) and (i1) of Theorem 5.1. By Part (iii) of Theorem 5.1, the form F4
will be isomorphic with Fy4 if and only if ¢ € (C*)*. [

We discuss next the relation between R-isomorphism and C-homomorphism
of cubic forms.

Let Cubicg(M) be the set of R-isomorphism classes of binary Gaussian
cubic forms on M with primitive determining mapping of type C. Set

Sr(C) = | [ Cubicg(M) and §(C) = ] ] Cubicc(M),
M] M]
where [M] runs over the elements of Pic(C) satisfying 3[M] = [C*] and []
means disjoint union.
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The set S(C) carries a natural involution given by
[M,F] — [M,F] := [M,F],

where M is defined as follows: M = M as R-modules with C acting by
c-X = °x, where ¢ — ¢ is the canonical involution of C. This is well-
defined because g depends only on the R-module structure of M, and it
will be of type C for M if and only if it is so for M since n(c) = n(c).
Note that [M,F] = [M, F] if and only if (M,F) possesses a C-sesquilinear
automorphism.

PROPOSITION 5.3. With the previous notation we have
(i) 8r(C) = 8(C)/ ~, where ~ identifies [M,F] with [M,F].

(i) If [M] = [M] and 3[M] = [C*], then Cubicc(M) has an element [M, Fo]
fixed under the involution.

(ii) If [M] # [M] and 3[M] = [C*] in Pic(C), then Cubicc(M) =
Cubicg(M). In particular, Cubicg(M) is a simply transitive (C* /C >‘3)—set.

Proof. (i) Let ¢: (M,F) — (M',F’) be an R-isomorphism. Then % is
an isomorphism of quadratic mappings (M, gr, D(M)) — (M',F', D(M")). By
Proposition 2.3, the map v is either C-linear or C-sesquilinear. Hence either

[M,F]=[M',F'] or [M,F]=[MF].

(i1) We start out with an element [M, F] € 8(C), which exists by hypothesis
on M and by Theorem 5.2(1), and we choose a C-sesquilinear automorphism
0: M — M. We know by Theorem 5.2 that all the C-forms on M are of the
form wF with w € C*. In particular Foo = wF for some w € C*. An easy
computation using (21) shows (wF)oo =w(Foo), so Fo 0? = wwF . Since
o? is C-linear, it follows from Theorem 5.2 that ww € C*. Using the fact
that the cohomology of Z/2Z with coefficients in a group of odd exponent
(in this case C*/C 3 with Z/2Z acting via the canonical involution of C) is
trivial, we conclude that w = 7~ 'uv® for some u,v € C*. Let Fy = uF. By
direct computation we have Fyoo = v’Fy ; thus [M,F] = [M,Foo] = M, F]
as claimed.

(iii) If [M] 3 [M], by Part (i), no two distinct elements of Cubicc(M) can
be identified in Cubicgr(M), that is, the canonical projection

Cubicc(M) — Cubicg(M)

is a bijection. The second assertion follows from Theorem 5.2. [J
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COROLLARY 5.4. Let [M] € Pic(C) be as in Part (ii) of Theorem 5.3.
Let [M,Fy] € Cubicc(M) be a the fixed point of the involution. Then the
map (C*/C* 3) — Cubicc(M) given by u — [M,uFy] is an isomorphism of
Z /27 -sets. In particular, this correspondence induces a bijection Cubicg(M) ~
(C* /Cx3)/~, where ~ identifies ¢ with ¢.

Proof. By Theorem 5.2, it is enough to show that the map u —
[M,uFy] commutes with the action of Z/2Z via the involutions. Let
o: (M,Fy) — (M, Fy) be a C-isomorphism and let u € C*. Since (uFy)oo =
wW(Fy o 0), we have [M,uF,] = [M,uF,] = [M, (uF,) o 0] = [M,u(Fy 0 0)] =
M, uFy]. O

The above proposition applies in particular to the case of fields. We can
summarize our results in this case as follows:

PROPOSITION 5.5. Let K be a field of characteristic not 2 or 3. Let Sk
be the set of K-isomorphism classes of all binary cubic forms over K with
nonzero discriminant. Then there is a natural partition

(25) Sk = [ ] Cubick(C),
C

where C ranges over the quadratic étale K-algebras and each Cubicg(C) is
in one-to-one correspondence with the quotient of C* /(C*)* by the involution

c+—C.

Proof- If K is a field then Pic(C) = 0 for all quadratic K -algebras C.
Each cubic:form with nonzero discriminant will be a C-form for a unique
quadratic étale algebra, namely the even Clifford algebra of its determining
form, by Proposition 2.8 and Theorem 4.5. We finish by applying Proposi-
tion 5.3. [

As an illustration of these ideas, we prove a result known to L. E. Dickson
[5, page 23]:

PROPOSITION 5.6. Let K = F, be a finite field with q elements, not of
characteristic 2 or 3. Then the number of GLy(F,)-equivalence classes of
binary cubic forms over ¥, with nonzero discriminant is 3 if ¢ =2 mod 3,
and is 9 if g=1 mod 3.
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Proof. The étale quadratic algebras over F, are
1. C=F;xFgy;

2. C=F,.

If g =2 mod 3q, then C*/(C*)? is trivial in the first case and is Z/3Z
in the second case since g> = 1 mod 3. In the second case the involution
¢ — ¢ fixes the identity element of C*/(C*)* and interchanges the other
two elements, giving 2 orbits on this. This gives 14 2 orbits in total, so
by Proposition 5.5, we have 3 isomorphism classes of binary cubic forms. If
g =1 mod 3, then C* /(C*X)? is Z/3Z xZ/3Z in the first case and is Z/3 in
the second case. In the second case, the Galois involution acts trivially, since
Fy/ (F,”)® = C*/(C*)’. This gives 3 orbits. In the first case, the involution
flips the two factors, and there are clearly 6 orbits. This gives a total of 9
orbits, and hence 9 cubic forms. [

REMARK 5.7. When R =K is a field of characteristic not 2 or 3, one can
give an alternate description of Sg. Since GL, acts threefold transitively on
P!, any binary cubic form with nonzero discriminant is equivalent over the
separable closure of K with @ = xy(x — y). Therefore, by the usual descent
yoga, there is a canonical bijection

(26) Sx ~ HY(K, Aut(®)),

where Aut(®) is the K-group scheme of automorphisms of ®. The structure
of Aut(®) is easily worked out:

Aut(®) = p3 x 53,

where S; is the symmetric group on 3 letters as a trivial Galois module; it
corresponds to the stabilizer in PGL, of the set of zeros of ® in P!.

The signature S3 — p, induces a homomorphism §: Aut(®) — u,, which
in turn induces a map in Galois cohomology

27) 5.: H'(K, Aut(®)) — H'(K, 1) = K> JK**.
Using (4) and the identification (26), we can show that
5.(F) = —3Dp € K*JK*?.

Thus we can interpret the partition (25) as the partition on H!(K, Aut(D)) given

by the fibers of é., the set Cubick(C) corresponding to the fiber §-1(—3D),
where D is the discriminant of C.
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When R is a PID we can give a more precise version of Theorem 5.2. In this
case, C is a free R-module, and since R1 is a direct factor, C = R®ORw = R[w]
1S a monogenic R-algebra. Therefore C* is free of rank one over C (see
Section 7), so the condition 3[M] = [C*] of Theorem 5.2 reads simply
3[M] = 0. Furthermore, since Pic(R) = 0, the exact sequence (13) induces
an isomorphism

(28) G(O)[3] = H(C)[3] = Pic (O)[3]

(note that R™ /n(C™) is an elementary abelian 2-group).

The isomorphism (28) suggests that when R is a PID, it should be possible
to use quadratic forms instead of quadratic mappings and develop a theory for
binary cubic forms that is completely parallel to Eisenstein’s theory over Z.
As we mentioned above, any projective R-module is free, so that a quadratic
form (M, q) is the same thing as a quadratic form classically understood: a
homogeneous polynomial of degree two. If ¢ is of type C then M = R?
becomes an invertible C-module. This C-module is said to be associated to q.

We begin by proving an easy technical lemma.

LEMMA 5.8. Suppose that R is a UFD and let C = R[t]/(t* + bt + ¢).
Let D = b?> —4c and let w be the class of t in C. Set § = b+ 2w (note
that 6* = D) and let € = x+ y§ with x,y € R. If n(€) = 0 (mod 4R), then
¢ =0 (mod 2C).

Proof. Itis enough to prove x = by (mod 2R). Let p € R be an irreducible
element. For z € R — {0} we denote by ord,(z) the largest power of p
occurring in the factorization of z. Set m = ord,(x — by). If m < ord,(2)
then, since ord, is a valuation, ord,(x+ by) = ord,(x — by +2by) = m. Hence
ord,(x* — b*y?*) = 2m < ord,(4), which contradicts our assumption (since
b?> = D (mod 4R)). Therefore ord,(x — by) > ord,(2) for all irreducible p,
which proves the lemma. [

Now we can prove:

PROPOSITION 5.9. Let R be a PID and let F be a cubic form on M = R*
given in the natural basis by (1), with coefficients a; € R. Suppose that its
Eisenstein determining form qr(X) = ax% + bxyxy + cx%, as in (2), is primitive
of discriminant D # 0 and let C = Ct(gr) = R[{] /(z‘2 + bt + ac). Then
3[M,qr] =0 in G(C).

Proof. By the syzygy (7) we have
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4gr(x)qr(y)qr(z) = X* — DY?,
where X and Y are symmetric R-trilinear forms in X,y,z. Applying the lemma
to the rings R’ := R[x1,%2,¥1,¥2,21,22] and C' := C®r R’ with £ =X+ oY
(with & as in the lemma; the lemma applies since R, hence R’, is a UFD),
we have

(29) qr(X)qr(y)qr(z) = n(T),

where T = £/2 € C', by the lemma. Note that T is symmetric trilinear in
X, Y,z ; hence the identity (29) shows that the triplication of gr is the trivial
form, as desired. [

The results below were essentially known in the case R = Z to Eisenstein
[6] and [7], Arndt [1], Pepin [13], Cayley [3] and Hermite [8].

THEOREM 5.10. Let R be a PID. Let q = ax? + bxjx, + cx5 be a
primitive binary quadratic form over R of discriminant D = b* — 4ac # 0.
Let C = C*(q) be the even Clifford algebra of q and let M := R* be endowed
with the natural C-module structure. Let T € C be such that T +7 =0 and
72 = D. With this notation we have

(1) There exists a Gaussian binary cubic form F such that qr = q (where
qr is given by (2)) if and only if 3[M,q} = 0 in the group G(C) of
C-isomorphism classes of quadratic forms of type C.

(i) If F and F' are Gaussian binary cubic forms with qr = qp = q,
then there exists a unit ¢ = a + bt € C* with n(c) = 1 such that
F' = ¢F = aF + bGpg, where G is the cubic covariant defined in (5).

(iii) Let two cubic forms F and F' with qr = qr = q be given. The
following conditions are equivalent :
(a) There exists d € C* with n(d) = 1 such that F' = d°F.
(b) There exists d € C* such that F' = d°F.
(¢) F and F' are SL,(R)-equivalent.

Proof. (1) By Proposition 5.9 the condition 3[M, g] = 0 is necessary. We
shall see that it is sufficient. Suppose 3[M,g] =0 in G(C); in particular

3[M] = 0 € Pic (C),

thus by virtue of Theorem 5.2, Part (i), there exists a Gaussian cubic form F
such that [M, gr,R] = [M, q,R] in H(C). By Proposition 5.9, the class M, gr]
is in G(C)[3]; hence, by the isomorphism (28), we conclude [M, qr] = [M, q]
in G(C).
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(i1) Suppose that gr = gpr = q. CQ®K is an étale K-algebra since D # 0.
Hence by Corollary 4.7 both F and F’ are C-forms and by Theorem 5.2,
Part (i), there exists ¢ € C* such that F' = ¢F = (p(c)/3)F (in the notation
of (23)). Writing ¢ = a+ bt we get F/ = aF + (b/3)(p(7)F). By (24) we
have p(7)F = 3Gy (changing the sign of 7 if needed) and direct computation
shows gr = n(c)gr. Thus n(c) = 1 as required. Note that in general, the
coefficients a,b will have a 2 in the denominator since 7 = b + 2w for a
generator w of the algebra C (see Lemma 5.8).

(1i1) a)=>b) is trivial.

b)=c¢). If F' = &’F with d € C* then, by Part (ii) of Theorem 5.2, F
and F’ are C-equivalent, the isomorphism being x — dx. We have n(d)® =1
by the proof of Part (ii) of this theorem, so replacing d by n(d)d we can
assume n(d) = 1; that is, F and F’ are SL,(R)-equivalent, and this also
establishes the implication b)=>a).

c)=-a). If F/(x) = F(dx), where d € SL,(R), then d is in the orthogonal
group of g = gr = gp. Since det(d) = 1, it is in the special orthogonal
group of this form, hence given by multiplication by an element d € C;* by
Corollary 2.4. But F(dx) = (d’°F)(x). [

COROLLARY 5.11. Now let R = Z, and let D be a nonzero integer
congruent to 0 or 1 modulo 4. Let F be an integral Gaussian binary cubic
form with primitive determining form of discriminant D.

(i) Suppose D < —3. If F' is another Gaussian binary cubic form with
gr = qr then F' is SLy(Z)-equivalent to F.

(i1) Suppose D > 0 or D = —3. Then there are exactly three SL,(Z)-
equivalence classes of Gaussian binary cubic forms F’ such that qr = qF.

Proof. We have that CT(qr) = Cp, the unique quadratic Z-algebra of
discriminant D. Note that (CD)f(/(CD)f<3 is trivial when D < —3 and is
cyclic of order 3 when D = —3 or D > 0. The corollary follows immediately
from this and Parts (ii) and (iii) of Theorem 5.10. ]

COROLLARY 5.12. Let D be a nonzero integer congruent to 0 or 1
modulo 4. Let h3(D) be the number of SL,(Z)-equivalence classes if binary
Gaussian cubic forms with primitive determining form of discriminant D.
Then h3(D) = |Pic (Cp)[3]] if D < —3 and h3(D) = 3|Pic (Cp)[3]| if D= -3
or D> 0.
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Proof. Follows immediately from Corollary 5.11, equation (28) and Part
(i) of Theorem 5.10. [

6. COHOMOLOGICAL INTERPRETATION

Let G, be the multiplicative group regarded as an affine group scheme
over X := Spec C and let u3 C G,, be the kernel of multiplication by 3. All
the cohomology groups below are with respect to the flat topology on X.

THEOREM 6.1. Suppose [C*] is divisible by 3 in Pic(C). Then the group
Hfli(X, us) acts simply transitively on the set 8(C) of C-equivalence classes
of cubic C-forms with primitive determining mapping.

Proof. Recall that the group H}(X, p3) can be interpreted concretely as the
set of isomorphism classes of pairs (L, ), where L is an invertible C-module
and where ¢: L& — C is an isomorphism (see Milne [14, Chap. III, §4]).
Let [L,%] be an element of H}(X, n3) and let (M, F) be a cubic C-form. By
Theorem 5.1, Part (i), we can assume F = Fy, where ¢: M® — C* is an
isomorphism. We define an action of Hi(X,u3) on-8(C) by

(30) (L, 9] [M,Fy] =[LOM, Fyggel,

noting that
Lom® =12 euM®B S cecr =

1s an isomorphism. Let us show first that this action is simple. Suppose
LM, Fygs] = [M,Fg]. Then, L =2 C. Choosing an isomorphism L — C,
we have (x ® y ® z) = uxyz, where u € C*. Hence [M,F;) = [M, Fusl,
and by Part (iii) of Theorem 5.1 we conclude that u = ¢ for some ¢ € CX.
But then c¢: C — C provides an isomorphism of (C,%) with (C,1), thus
[L,¥] = [C, 1].

We show now that the action is transitive. Let [M;,Fs] (i =1,2) be
elements of S(C). Let M3 = Homc(M, C) and let ¢35 : (C*)* — (MS?)®
be the dual of ¢,. Let L =M; ® M5 and let ¢ = ¢; ® ¢§*1. One verifies

immediately that [L, ] - [M3, Fy,]1 = [My, Fy4,], which proves that the action
is transitive. [
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Note that, under the hypothesis of (6.1),

$CO= J] CubiccMo®L)
LePic (O)[3]

where Mj is any invertible module such that M83’3 =~ C*. Each Cubicc(M)
is a torsor for C* /(C*)* by Theorem 5.2.

Consider now the short exact sequence of group schemes over X

1———->p3——i—>Gm—i-—>Gm———->1

and the associated Kummer long exact sequence in flat cohomology
HY(X,Gp) —— HYUX,Gn) —2— HLX, ps)
— s HAX,G,) —— HLX,Gp).
Using the canonical isomorphisms (see [14, Chap. III, §4])
HY(X,G,) ~C*, H}X,Gp) ~Pic(C)
we obtain a short exact sequence
(1) 1 — %/ 2 HIX, u3) 2 Pic (O)[3] — 1.

By what we have proved, 8(C) will be empty unless [C*] is divisible by 3
in Pic (C). By the Kummer sequence, [C*] is divisible by 3 if and only if

9IC*] =0 € HA(X, ps).

Assume that this holds and consider the group H(C) of binary quadratic
mappings as defined by Kneser in [11]. The determining form construction
(14) gives a well-defined map

e: 8(C) — H(C)
We fix a “base point” [My, Fy] € $(C) and we modify the map e slightly
so that it becomes a map of pointed sets. We define
e’ §(C) — H(C)
[M, F] — elM, F] — e[Mo, Fo] .
We also define a map f: HY(X, n3) — 8(C) by f(x) = x - [My, Fol, where

- is the action defined in (30). Note that by virtue of Theorem 6.1, the map
f 1s bijective. '




ARITHMETIC OF BINARY CUBIC FORMS 91

With this notation we have a commuiative square

H)(X, p3) —— Pic(O)[3]

(32) fl JT

() —— HO)3]

where j: H(C) — Pic(C) is the natural homomorphism [M,q,N] — [M].
Kneser [11, §6] has shown that j is an isomorphism (see also Section 2),
so the two vertical maps in (32) are bijections and the horizontal maps are
surjections.

Note that because of the exact sequence (31), the fibers of ¢’ are in one-
to-one correspondence with the elements of the group C*/C x> This is, of
course, equivalent to Theorem 5.2, Part (ii).

7. EXPLICIT COMPUTATIONS AND CUBIC TRACE FORMS

In this section we assume that A := C ® K is a quadratic étale algebra
over K. In this case the trace form (x,y) — Tr4/x(xy) is nondegenerate and
gives rise to a natural isomorphism between the codifferent

Cl = {x €A: TI'A/K(XC) C R}

and the dual C*. If M is a fractional C-ideal with M> ~ C’, then, by
Theorem 5.1, the cubic forms on M with primitive determining form are
given by

(33) Fy(x) = Tr 4 /g (uax’),

where a € A is a fixed element with aM® = C’, and u is a unit of C.
Moreover, by Theorem 5.1, two such forms F, and F, are C-isomorphic if
and only if u and v represent the same element of C* /(C*)3.

We shall compute explicitly some examples for R = Z using (33). In this
case we have C = Z[t]/(f(t)), where f is a monic degree-two polynomial
with distinct roots and coefficients in Z.

Let w be the class of ¢ in C. It is well-known, and easy to prove, that the
codifferent C’ is a principal fractional C-ideal generated by f'(w)~!, where

f' is the derivative of f. Hence, [C*] is trivial in Pic (C) (note that this holds
more generally provided Pic (R) = 0).
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ExXAMPLE 7.1. Let C = Z[l—‘%—"_ﬁ] (note that 23 is the smallest square-
free positive integer N such that A = Q(-/—N) has class number divisible
by 3; in fact Pic (C) ~ Z/3Z (see [2]). The class group Pic (C) is generated
by the class of

M =2Z+ vZ,

where w = +v=23 "2_23 Thus the three classes of Pic(C) are represented by
the ideals C, M and M. The quadratic forms attached to C, M and M are
respectively

X% +JC1)C2 + 6)(%, 2)(% +XIXQ + 3x%, 2)(% — X1X2 -+ 3x§ .
One verifies also that § = w—2 satisfies M> = 0C, thus (1/6+/—23)M> = C’.

Hence, by (33), the cubic C-form on M is given by

X2

9\/—23> ’

where X = 2x; + xw. Similar computations can be done for M (taking
g = —1—w and the Z-basis {2,—1+w}) and for C (with the basis {1,w}).
The following table summarizes the results of these computations:

F(x) = Tr (

Module Cubic Form Determining Form

M | =X =38x 4303 +26 | 28 +xix+ 3%

M x? — 3x%x2 —3x105 + 2x7’2 2% — xix0 + 3%

C x2(3x% + 3% — 5x3) B+ x1x + 615

EXAMPLE 7.2. Let C = Z[+/79]. Here also Pic(C) =~ Z/3Z (see [2]) (in
fact 79 is the smallest square-free positive integer N such that Q(v/N) has
class number divisible by 3).

The class group Pic(C) is generated by the class of

M=9Z+(4+V719Z.

Thus the three classes of Pic(C) are represented by the ideals C, M
and M. One verifies also that o = 52 — 54/79 satisfies M3 = aC, thus
(1/2a/79M? = C'. The fundamental unit of C is 7 = 80 + 9/79 ; hence,
by (33), the three nonisomorphic cubic C-forms on M are given by

k
T X3)’

205\/;75

Fx(x) = Tr (
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where x = 9x; + (4 + V79x, and k = —1,0,1. Similar computations can
be done for M (taking the Z-basis {9, —4++/79}) and C (with the natural

basis {1,v/79}).

[1]
(2]
(3]
[4]
[5]
[6]

(7]

Module Cubic Forms Determining Form

—68% + 1118 %, — 60x122 + 1153
M 53 + 24x3xy + 33x14 + 1613 0x? + 8x1x2 — 7%
868x3 + 3729x3x; + 5340x1x3 + 2549x;

—868x3 + 3729x3x; — 5340x1%5 + 2549x;
—53 + 24x%x — 33x13 + 163 9% — 8x1x2 — 7%
68% + 111x%x; + 60x13 + 11

=

—9x3 + 240x3x; — 2133x14% + 632003
C 3xx + 79% X — 79x;
9x3 + 240x3x2 + 2133x1x5 + 6320x3
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