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Appendix. A bijection between hives and
Littlewood-Richardson skew tableaux

(by William FULTON)

The aim of this appendix is to give a simple and direct bijection between
the hives with given boundary (given by a triple of partitions), and the set

of Littlewood-Richardson skew tableaux for the given triple. In principle one
could construct such a mapping from [4], but it is simpler to do it directly
from hives; in the description we give here, it is easy to see that the map is

a bijection, without knowing that the two sets have the same cardinality. As
in [4], we produce contratableaux, but there is a standard bijection between
these and the original Littlewood-Richardson skew tableaux.

Consider an integral hive, with sides having n + 1 entries, corresponding
to partitions À, //, and v, with \v\ =a |A| -f |/x|. The differences down the

northwest to southeast border give the partition À, the differences across the

bottom border from right to left give /i, and the differences down the northeast

to southwest border give v (see Theorem 1). The main idea for constructing
a skew tableau with a reverse-lattice word is to use the other northwest to
southeast rows of entries to construct a chain of subpartitions of À.

The entries of the hive will be denoted alk, with 1 < i < n + 1 and

0 < k < n + \ — i. Here the superscript denotes the northwest to southeast

row of the entry, with the first row being the long row on the boundary, and

the others in order below that; the subscripts number the entries along the

rows, from northwest to southeast.

a0

ao °\

% 2 1

% al a2

a0ala2 a\

Note that 0, and that Àk a\ — a\_x for 1 < k < n.

For 1 ^ i ^ define a sequence
^

' * *
i i |) setting

A^° a[ — aik_1. Note that A(1) — A.
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There are three types of rhombus inequalities, depending on the orientation

of the rhombus. We first consider two of them :

This says that A^+1) > \f+l.

ak-1

This says that Xf > A£+1).

Together, (1) and (2) say that Xf>A^+1) > In particular, each

sequence A® is weakly decreasing, and we have a nested sequence of

partitions : A(1) D A(2) D • • • I) A(n) 0 A^+1) 0.

For example, the hive

0

10 6

17 14 10

24 21 18 14

28 26 23 19 15

gives the chain of partitions (6,4,4,1) 0 (4,4,1) 0 (4,2) 0 (2) 0 0.
We identify partitions with Young diagrams, but rotated by 180 degrees,

so the diagram for a partition A has A^ boxes in the k01 row from the bottom,
and the rows are lined up on the right. Fill the boxes by putting the integer
i in each box of A^ — A(r+1). The conditions (1) and (2) say exactly that
the result T is a skew tableau on this shape, that is, it is weakly increasing
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across rows and strictly increasing down columns. Such a T is often called
a contratableau of shape A. In our example, T is

1

1 1 1 2
2 2 3 3

1 1 3 3 4 4

The word w(T) is obtained by reading from left to right in rows, from
bottom to top. In the example, w(T) 113344223311121.

Let t/(/i) be the tableau of shape fi whose Ith row has \±i entries, all
equal to i. The word w(U(/S)) is similarly read from left to right, bottom to

top. In our example, fi (4,4,3,2), and w{U{yi)) 443332222 1 1 1 1.

Now we consider the last rhombus inequalities :

(3) ak_^—yak

These say that — alk_x < alk — alj~l. We claim that this is equivalent to
the condition that w(T) w(U{fi)) is a reverse lattice word [5, §5.2].

This asserts that, if we divide this word at any point, the number of times

that i occurs to the right of this point does not exceed the number of times

that i — 1 occurs to the right of this point. We only need to check this at a

division corresponding to the place in the k01 row from the bottom of T that

divides elements strictly smaller than i from elements greater than or equal

to i. The number of times that i occurs here is

+ (^lfc+1 ~ ^+l1}) ^ (^«+1-/ - °) + Vi

(Af +<! + •• + A® - (A<i+1> + + • •. + A<*;>) +
(4+w - 4-1) - (4t1, - 4t\) + (4t1 - 4+1-,)
4t\ - 4-i

Similarly, the number of times that i — 1 occurs is

Q^k+X ~ ^+l) + ~ 4+2) (^n+2-i ~ °) + Vi-1 4 - ak
1

*

Note that the number of times i occurs in all of T is aq+1 — al0 — \it — vi —

This process is reversible. Given any contratableau T of shape À such

that w(T) • w(U(fd)) is a reverse lattice word, T determines the chain
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A(1) D A(2) D - D A(n) D 0, and from these partitions one successively

fills in the entries in the northwest to southeast diagonal rows of the hive;
the rhombus inequalities (1) — (3) are automatically satisfied.

To make the story complete, we recall why such contratableaux correspond

to Littlewood-Richardson skew tableaux, using standard results about tableaux,

as in [5]. However, it may be pointed out that these contratableaux are at

least as easy to produce and enumerate as the more classical skew tableaux.

First, the condition that w(T) • w(U{p)) is a reverse lattice word, given that

the number of times i occurs in T is — /a*, is equivalent to asserting that

w(T) w(U(n)) is Knuth equivalent to w{U(v)) [5, §5.2]. The rectification
R of a contratableau T of shape A is easily seen to be a tableau of shape

A, and with the same property that w(R) • w(U(fj,)) is Knuth equivalent to

w(U{y)). The correspondence between tableaux and contratableaux of shape
A is a bijection, by reversing the rectification process.

Now the condition that w(R) • w(U(/j9) be Knuth equivalent to w(U(v))
is equivalent to the condition that R • U{fi) — U{v) in the plactic monoid of
tableaux [5, §2.1]. It is easy to see, from the definition of multiplying tableaux

by column bumping entries of the first tableau into the second [5, §A.2], that

if R and S are tableaux with R- S U{ß), then S must be equal to U(a) for
some partition a. This gives a correspondence between the set of tableaux R

that we are looking at and the set of pairs (R,S) with R of shape A, S of
shape (i, whose product is the tableau U(y). There is a standard construction
[5, §5.1] between these pairs and the set of skew tableau on the shape vj\
of content (jl whose word is a reverse-lattice word.
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