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2. FLATSPACES

We can consider a hive as a graph over the hive triangle. At each hive
vertex we use the label as the height. We then extend these heights to a graph
over the entire hive triangle by using linear interpolation over each small
triangle. A rhombus inequality now says that the graph over the rhombus
cannot bend up across the middle line.

In this way the graph becomes the surface of a convex mountain. The graph is
flat (but not necessarily horizontal) over a rthombus if and only if the thombus
inequality is satisfied with equality.

We define a flatspace to be a maximal connected union of small triangles
such that any contained rhombus is satisfied with equality. The flatspaces split
the hive triangle up in disjoint regions over which the mountain is flat. The

flatspaces of the hive in Example 2 consist of two hexagons and 13 small
triangles.

Flatspaces have a number of nice properties. We will list the ones we
need below. Since all of these are straightforward to prove directly from the
- definitions, we will simply give intuitive reasons for them.
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1. Flatspaces are convex. This is clear since they lie under intersections
of a convex mountain with a (convex) plane.

2. All flatspaces have one of the following five shapes (up to rotations
and different side lengths):
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These are the only convex shapes that can be constructed from small triangles.

3. A side of a flatspace is either on the border of the big hive triangle, or
it is also a side of a neighbor flatspace. In other words, a side of one flatspace
can’t be shared between several neighbor flatspaces. This again follows from
the convexity of the mountain described above.

Given a labeling b € RZ, let x,y,z be labels of consecutive border vertices
on the same side of the big hive triangle (in any direction).

If b is the border of a hive, then the rhombus inequalities imply that
y—x > z—7y, although more inequalities are needed to guarantee that b € p(C).
We will say that b is regular if we always have y —x > z —y, when x,y,z
are chosen in this way. When a border comes from a triple of partitions, it is
regular exactly when each partition is strictly decreasing.

4. If the border of a hive is regular then no flatspace has a side of length
> 2 on the border of the big hive triangle. In fact, if the labels x,y,z above
are on a flatspace side, then y —x =z —y.

Given a hive, a non-empty subset S C H — B 1is called increasable if the
same small positive amount can be added to the labels of all hive vertices in
S, such that the labeling is still a hive.
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5. The interior vertices of a hexagon-shaped flatspace form an increasable
subset. Proving this is a matter of checking that each rhombus inequality still
holds after adding a small enough amount to the labels of these vertices. Only
rthombi that are already flat need to be considered, since for all others there
is some “slack to cut”.

Note that the corresponding statements for flatspaces of other shapes are
false. The reason is that all other shapes have at least one sharp corner (with
a 60° angle). Lifting the interior vertex closest to a sharp corner is prohibited
by the inequality of the thombus in that corner.

Note also that the sharp corners of a flatspace of any shape are endpoints of
its longest sides.

PROPOSITION 1. If a hive with regular border has no increasable subsets,
then its flatspaces consist of small triangles and small rhombi.

Proof. Otherwise some flatspace has a side of length > 2. This follows
because the only types of flatspaces that have all sides of length one are
small triangles, rhombi, and small hexagons, and the later do not occur by
property 5.

Let m be the maximal length among all sides of flatspaces. We will
proceed by constructing a region consisting of flatspaces with a side of length
m, such that the interior hive vertices of the region is an increasable subset.
The crucial point is to avoid sharp corners pointing out from the region, since
otherwise we would get the same problems as with the pentagon above. We
need m > 2 to be sure that interior vertices exist.

Start by taking any flatspace having a side of length m, and mark this
side. In the pictures this is shown by making the side thick. Then choose (and
fix) a line crossing (the extension of) the marked side in an angle of 60° and
call it the moving direction. If the flatspace is a triangle or a parallelogram,
we furthermore mark an additional side. For a triangle, this is the other side
not parallel to the moving direction, while for a parallelogram we mark the
side opposite the one already marked.

We construct a region, starting with the chosen flatspace. This region will
initially have one or two marked sides, depending on the shape of the chosen
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flatspace. As long as the region has a marked side on its outer border, the
flatspace on the opposite side is added to the region. Note that this flatspace is
well defined by property 3, since regularity prevents any marked edges from
being on the border of the big hive triangle. If the new flatspace is a triangle,
we mark its unmarked side which is not parallel to the moving direction.
If the new flatspace is a parallelogram, we mark the side opposite the old
marked side. If it is not a triangle or parallelogram, we don’t mark any new
sides.

Start

Since the region always grows along the moving direction, it will never
go in loops. Now since no marked edges can ever reach the border of the
big hive triangle, the described process will stop. Notice that by construction
of the region, each included flatspace has enough of its longest sides marked,
that all sharp corners are endpoints of marked sides. Since the final region
has no marked sides on its outer border, this means that it can’t have any
sharp corners pointing out.

We claim that the inner vertices of the final region form an increasable
subset. If not, some small rhombus satisfied with equality in the region has
more obtuse than acute vertices on the region border. If any flat thombus has
both of its obtuse vertices on the border, then it follows, using convexity of
the flatspace containing the rhombus, that one of the acute vertices is a sharp
corner of the region. On the other hand, if a flat rhombus has one obtuse
vertex and no acute vertices on the border, one can deduce, using property 3,
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that two marked sides must meet in a 120° angle at the obtuse vertex on the
border. However, the construction never introduces marked sides that meet in
this angle.

We have established that the presence of any flatspace which is not a small
triangle or rhombus gives rise to an increasable subset. This completes the
proof. [J

3. SMALL FLATSPACES

Let h be a hive, all of whose flatspaces are small triangles or small rhombi.
We construct a graph G from & as follows. G has one fat black vertex in the
middle of each small triangle flatspace. In addition there is one circle vertex
on every flatspace side. Each fat vertex is connected to the three vertices on
the sides of its triangle, and the two circle vertices on opposite sides of a flat
rhombus are connected. This graph is topologically equivalent to the reduced
honeycomb tinkertoy of Knutson and Tao.
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LEMMA 1. If h is a corner of its hive polytope p~'(p(h)) N C, then G
is acyclic.

Proof. Suppose G has a non-trivial loop, and give this loop an orientation.
Each hive vertex then has a well defined winding number, which is the number
of times the loop goes around this vertex, counted positive in the counter
clockwise direction. Note that the winding number is zero for each border
vertex, and that some winding numbers are non-zero if the loop is not trivial.

For each r € R, let h, € R” be the labeling which maps each hive vertex
to the label of & at the vertex plus r times the winding number of the vertex.
We will show that h, is a hive for r € (—¢, €), for a suitable € > 0. This
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