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FINITE GROUP ACTIONS ON THE 7-SPHERE

by Hansjorg GEIGES and Charles B. THOMAS

The aim of this note is to prove the following theorem.

THEOREM. (i) Let © be a finite group acting freely and topologically
on S7. Then 7 can also act freely and linearly on S’.

(ii) For odd natural numbers 2s — 1 different from 1, 3 or 7, one can
always find a free smooth action on S¥~' by a finite group which cannot act
freely and linearly.

A weaker version of this theorem was announced in [3]. The proof of
the theorem uses only classical results about finite group actions on spheres,
mostly from [15], and it is a little surprising that this theorem has not been
observed before. The interest of this result in the context: of more recent
investigations on geometric structures on spherical space forms is explained
in [3] and [4].

The (as yet unproven) analogue of part (i) of our theorem in dimension 3
forms an essential step in Thurston’s geometrisation programme [13]. Accord-
ing to Thurston’s conjecture, any 3-manifold covered by S§° is actually a
quotient of S* under a free linear action of some finite group 7. This splits
into proving the said analogue of our theorem, and then showing that the
only possible actions of 7w are indeed linear, i.e. given by fixed-point free
representations of 7 in SO(4). A proof of the former was announced in [10],
but at present it is not clear whether all details of the argument can be filled
in. For some groups acting on S° it is known that they can only act linearly,
cf. [4]. See [5, Problems 3.37 and 3.45] for further references on this issue.
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The only finite groups acting freely and topologically on S' are the cyclic
groups, and any such action is conjugate to a linear one.

Notice that part (i) of our theorem does not make any statement about
the possible actions of the groups 7 on S’. As is well-known, and contrary
to what one hopes to be true in dimension 3, there are many exotic smooth
actions (i.e. actions not conjugate to a linear one) on spheres of dimension
> 5, even by cyclic groups, see [14, Chapter 14].

The proof of part (i) of the theorem is case by case and exploits the
discussion of groups with periodic cohomology (or periodic groups, for short)
in [15]. First we collect some fundamental and well-known facts. Recall that a
finite group 7 is said to satisfy the pg-condition (p, g prime) if all subgroups
of m of order pg are cyclic.

Since the group 7 acts freely on S7, it has periodic cohomology, and the
(minimal) cohomological period divides 8. As a periodic group, 7 satisfies
all p?-conditions, cf. [1, Thm. VI1.9.5]. By [8] the fact that 7 acts freely on
some sphere implies that all 2p-conditions are satisfied; there are no free
actions by a dihedral group on S§*~1.

A group of order pg with p and ¢ distinct odd primes must be either the
cyclic group C,, or the metacyclic group D, , given as a nontrivial extension
of C, by C,. But D, , has cohomological period equal to 2q, cf. [2, p.229],
so a group 7 as in part (1) of our theorem also satisfies all pg-conditions.
Recall from [15, Thm. 5.3.1] that the pg-conditions are necessary for the
existence of a free linear action on some sphere.

We now distinguish between the solvable and non-solvable cases.

A. If 7w 1s solvable, then Theorem 6.1.11 of Wolf’s monograph [15]
applies. This theorem gives a complete list of the finite solvable groups with
periodic cohomology, separated into four classes, and states that such a group
satisfies all pg-conditions if and only if 7 can act freely and linearly on
some sphere. As it stands, however, it 1S not strong enough to guarantee the
existence of a free linear action on S, so we need to take a closer look at
the four classes in Wolf’s classification theorem.

I. The first class consists of the metacyclic groups of order mn with

presentation
{A,B|A"=B"=1, BAB™'=A"},

where m > 1, n > 1, ged(n(r—1),m) =1, and * =1 mod m. Furthermore,
the fact that 7 satisfies all pg-conditions is equivalent to the following: if d
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is the smallest natural number such that »* =1 mod m, then n/d is divisible
by every prime divisor of d. This numerical condition will be satisfied in all
solvable cases II to IV below.

The cohomological period of 7 is 2d (cf. [2, p.229]), so we must have
d € {1,2,4}. Furthermore, Wolf [15, Thm. 5.5.1] gives explicit fixed-point free
linear representations of (real) degree 2d. Recall that a linear representation
p: ® — GL(2d) is called fixed-point free if p(g) does not have 1 for an
eigenvalue for 1 # g € w. Furthermore, a real linear representation is always
equivalent to an orthogonal representation, so fixed-point free representations
of degree 2d induce a free linear action on S2?~! (and of course also on
§?%=1"for any positive integer k). In fact, one can always obtain unitary
representations, cf. [16].

Notice that if 7 is a metacyclic group of odd order, then the only possibility
for d is that it equal 1, which means that 7 is actually a cyclic group.

II. The second class of solvable groups m admit a presentation with
generators A, B, R, relations as in I, and additional relations

R>=B"? RAR'=A', RBR'=B",
subject to the numerical conditions as in I and the further conditions

P=r"1=1 modm, n=2", wu>2, wodd,

k= —1 mod 2", =1 modn.

The order of this group is 2mn. With d defined as in I, again we must have
d € {1,2,4}, since the subgroup generated by A and B is of type I with
cohomological period 2d. According to [15, p.180], the group = admits a
fixed-point free representation of real dimension 4d. So we only need to show
that the case d =4 cannot arise.

Indeed, on the one hand the numerical conditions stipulate 2" | k41, so
4 | k+ 1. On the other hand, since ! = 1 mod m, we also know that
d|k—1. Clearly this is impossible for d = 4.

We now want to identify such a group 7 of type II with one of the
groups C,,, x Q2" 'my, m3,my) described by Milnor [8], with the m; odd

and pairwise coprime. We only summarise the observations necessary to make
this identification.
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The subgroup of 7 generated by R and BY is isomorphic to the quaternion
group Q(2“*!). The normal subgroup of 7 generated by A and B is cyclic
of odd order mv, and we have a split extension

Coy — ™ — QQ2"T).

The generators R and B” of Q(2“t!) act on C,, as a pair of commuting
involutions, so we get a splitting

Cme = Gy X Gy X Coy X T,

with the m; pairwise coprime and such that
e R and BY act trivially on C,,,
e BY inverts elements in C,, and C,,,

e R inverts elements in C,, and C,,.

This identifies m as a Milnor group as described above, cf. [2, p.229].

Fixed-point free representations of the groups Q(2“*!'my,m3, ms) in SU(4)
are described in [2, p.255]. Taking the product with a group of coprime order
never constitutes a problem: if p is a fixed-point free unitary representation
of some group 7, then

plt, g) = exp(2mi/m)p(g)

defines a fixed-point free representation of C!, x 7 if m is coprime to |7|.

III. The third class of solvable groups described by Wolf has a presentation
with generators A, B, P,(Q, relations and numerical conditions as in I, and
further relations

P*=1, P’=0*>=(PQ)*, AP=PA, AQ=0A,
BPB~'=0, BOB!=PQ.

Furthermore, n has to be odd and divisible by 3.
As in the previous cases we have d € {1,2,4}, and from d|n we
conclude d = 1. This implies the relation BAB~! = A. Write n in the form
= 3%y with u > 1 and v not divisible by 3. Then the subgroup of =
generated by P, Q and B" is the generalised binary tetrahedral group T of
order 8 -3“. With C,, denoting the cyclic group of order mv generated by
AB*" we have the split extension

*
Cup — m— 1,
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and one easily verifies that AB> commutes with the generators of T;. So 7
is actually a direct product

b3
Cmv X Tu .

Notice that m must be odd (and also coprime to 3 by the conditions from I),
otherwise 7 would contain a subgroup C, x C, and would not be periodic.
The group T is well known to act freely and linearly on S3, and hence also

%
1

on S’, and the same is true for C,. x T7.

IV. For the fourth class of solvable groups we only need to observe from
Wolf’s explicit presentation that they contain a normal subgroup of type III of
index 2. Thus one may take a 4-dimensional fixed-point free representation of
this normal subgroup, and then the induced 8-dimensional representation of the
full group will also be fixed-point free (see [15, Lemma 5.5.3]), since the order
of the normal subgroup is divisible by every prime divisor of the order of the
full group. The groups in this class can be identified as extensions of a cyclic
group (of order coprime to 6) by a generalised binary octahedral group O; . As
observed by Milnor [8], the latter have cohomological period 4 and fixed-point
free representation in dimension 8§, but none in dimension 4 unless « = 1.

This concludes the discussion of the solvable cases.

B. We now turn to the case that m is non-solvable. Notice that in this
case the order of m must be even; otherwise, m being a periodic group, all
Sylow subgroups are cyclic, and this would imply that 7 is solvable of type I
by an old result of Burnside, cf. [15, Thm. 5.4.1].

By Suzuki’s classification of periodic non-solvable groups [11, Thm. C],
our 7 contains a subgroup isomorphic to SL,(r) with » > 5 prime, the
multiplicative group of (2 x 2)-matrices of determinant 1 with coefficients
in the field of r elements (recall that SL,(3) = T[ is solvable). The
cohomological period of SL,(r) equals lem(4.r — 1), cf. [6, Lemma 1.3].
Since for a group 7 in our theorem this has to divide 8, the only possibility
is ¥ = 5. According to Suzuki, there are two types to consider.

V. The group 7 is the direct product of SLy(5) (which has order 120)
and a metacyclic group of order coprime to 30. By our comment at the end
of I, this metacyclic group has to be cyclic, that is, # = C,, x SL,(5) with
ged(m,30) = 1. The group SL,(5) is isomorphic to the binary icosahedral

group I* and has fixed-point free representations of real degree 4, and so the
same holds for .
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VI. The final possibility is that 7 is an extension of a group of type V
by a cyclic group of order 2. So we can argue as in IV to get a fixed-point
free representation of real degree 8.

This concludes the proof of part (i) of the theorem.

Much of this discussion extends to free actions by finite groups « on
S?~1 in which case 7 must have period dividing 2'. The result for solvable
groups holds unchanged. To be more precise, in case I we obtain metacyclic
groups of period 2d admitting fixed-point free representations of degree 2d,
with d € {1,2,4,...,2"7'}. In the cases II, III and IV, we get exactly the
same groups as before (i.e. no higher values of d occur).

For non-solvable groups the restriction that the cohomological period divide
2" implies that we only get groups SL,(r) with r a prime of the form
r=2"+1 with 2 <w <t, as well as extensions of these groups as described
in V and VI. According to [12] these groups admit a free topological action
on $2°~! (and hence on S%~! by the join construction) which is conjugate to
a free linear action when restricted to any proper subgroup; cf. the discussion
in [4].

We now turn to the proof of part (i1). First suppose that 2s is divisible by
some odd prime g and write 2s = 2kqg. Choose an odd prime p that divides
29 — 1. By the Fermat-Euler theorem we know that 2°~! — 1 is also divisible
by p, so g has to be a divisor of p — 1, and in particular p and g will be
coprime.

We can therefore define a metacyclic (but not cyclic) group D,, as in I
with m =p, n = ¢q, and r = 2. By [9] this group acts freely and smoothly
on S%~1, and hence also on S¥~!, the join of k copies of §%~!.

Finally, if 25 = 2k k>4, we appeal to the result of [7] that SL,(r) acts
freely and smoothly on $*~! with 2s = lem(4, r — 1), that is, on a sphere of
the dimension predicted by the cohomological period. In the particular case at
hand, we can choose » = 17. The group SL,(17) admits a free smooth action
on S'®~! and hence on the join $*~! of 2¥=* copies of S'°. But the only
groups SL,(r) that can act freely and linearly on some sphere are SL,(3) and
SL,(5), see [15, Thm. 6.3.1] — even though the non-solvable groups SL,(r),
r > 5 prime, satisfy all pg-conditions for primes r of the form r = 2/ + 1
(and only for these), cf. [15, p. 197].

This concludes the proof of part (i1).
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The last comment in the proof above and our earlier remarks about actirons
on §¥~! also imply the following: If 7 acts freely and topologically on s>,
then 7 satisfies all pg-conditions. On §25-1 with 2s # 2' there are always
free smooth actions by metacyclic groups D, , violating the pg-conditions.
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