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Why the Appendices were not written :

AUTHOR'S APOLOGIES TO THE READERS

Appendix 2. The stable homeomorphism suggests a geometric link
between the homotopy and topological invariance of Pontryagin classes, at least

for manifolds with negative curvature but I did not manage to forge this to

my satisfaction till 1996 (see [Groz]); also see [Fa-Jo] for a deeper analysis.

Appendix 3. One can define a notion of hyperbolicity for an automorphism

a of an arbitrary finitely generated group T, such that (T.a) functorially
defines a Bowen-Franks hyperbolic system (see [Groi]). Unfortunately, this

class of (T.a) is rather limited, e.g. is not closed under free products and

does not include hyperbolic automorphisms of surface groups. I still do not
know what the right setting is.

Appendix 4. An obvious example of semi-hyperbolicity is provided by
non-strictly expanding endomorphisms, where the geometric picture is rather
clear. However, I still do not see a functorial description, in the spirit of the

symbolic dynamics, of more general semi-hyperbolic systems, not even for
the geodesic (or Weil chamber) flows on locally symmetric spaces (compare
[B-G-S] and [Br-Ha]).

Appendix 5. The section on entropy was inspired by Manning's paper
[Ma}], but I was unaware of the prior paper by Dinaburg (see [Din]) that

essentially contained the entropy estimate for geodesic flows (also discussed in
[Ma2]). On the other hand, estimating the entropy of an endomorphism (or an
automorphism) / in terms of /* : ttj —> tit appears now much less clear than
it seemed to me back in 1976. It is not hard to bound the entropy from below
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via the "asymptotic stretch" of /* : 7Ti —* tti with respect to the word metric
in 7Ti (see [Bow]). But this is not sharp even for linear automorphisms of tori
Tn, where the entropy is expressed by the "k-dimensional stretch" on H\ for
some k < n that equals the spectral radius of /* on H^. Such &-stretch can
be defined, in general, in terms of /* : tt\(5) —» (S) and the classifying map
S —» K(tti, 1) (refining the spectral radius of /* on Hk coming from K(7Ti, 1)),
but my obvious "proof" of the lower bound on the entropy by this k-stretch
missed a hidden trap. This was also overlooked in [Ma3] (for /* : H\ H\,
where a proper identification of the 66 k-stretch" with the spectral radius needs

extra work), as was pointed out to me much later by David Fried. (The

difficulty already appears for closed subsets S in the torus Tn invariant under
linear automorphisms / of Tn, where one wishes to estimate the entropy of
f\ S in terms of /* acting on the spectral cohomology of S coming from Tn.
On the other hand, the case of Tn —> Tn is settled in [Mi-Pr].)

Appendix 6. Probably, the recent progress in Nielsen theory allows a

description of the cases, where card(Fixf) is well controlled from below by
some twisted Lefschetz number (see [Fel]).

Appendix 7. Nothing interesting to say.

Appendix 8. Minima of geometric functional related to the logical
complexity have been studied in depth by A. Nabutovski (see [Na] and

references therein). Yet I do not feel ready yet to write this Appendix. For

example, I do not see what is the actual influence of a suitable complexity
measure of tï\{V) on the Plateau problem in V.
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