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COVERING LEMMA. Take a compact manifold S and consider a regular
(normal) covering T — S with the action of T' = m1(S)/mi(T). Fix a
fundamental domain D C T and denote by N(U), U C X, the number
of motions v € I' such that the intersection y(U) D is not empty. Consider
an action of the group R of reals in S and its lifting to T.

The entropy h of the action of R in S satisfies

1
h > liminf — log N(r(D)),
F—00 IF’

where r(D) denotes the image of D under the lifted action of r € R in T.

Proof. Use the definition of entropy involving coverings.

This lemma (and the proof) holds for discrete time systems and immediately
implies Manning’s estimate of the topological entropy of an f: S — S in terms
of the spectral radius of f.: H{(S;R) — H;(S;R). See [Ma], [Pu]. In Appendix
5 we show how to make use of the whole group m(S).

§3. PERIODIC ORBITS

For maps f: § — S there are several ways to estimate from below the
number card (Fix(f™)) of all points of period m. Denote by L(f) the Lefschetz
number Y ._ (—1) Trace(f.;), where i = dimS and fi;: H;(S;R) — Hi(S;R).

(L)

(Sh-S)

(Nie)

If all periodic points are nondegenerate (say, f is smooth and
generic), then card(FiX(f’")) > |L(f)| (Lefschetz).

If f is smooth and lim,,_, . |L(f™)| = oo, then

lim card (Fix(f")) = oo

m—oo

(Shub and Sullivan, see [Sh-S]).

Generally there is no way to extend the (L)-estimate to all maps, but
in the presence of the fundamental group one can apply the Nielsen

theory of fixed-point classes (see [Nie] and Appendix 6). This theory
yields in many cases the estimate

card (Fix(F)) > const |L(f)|,

and sometimes even card (Fix(f™)) > |L(F™)
contfinuous map.

, Where f is an arbitrary
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EXAMPLE. Let S be a compact cell complex with homotopy type of a torus
and let f: S — S be a continuous map such that f,;: H;(S;R) — H;(S;R) is
hyperbolic (no eigenvalues with norm 1). Then

card(Fix(f™)) > |[L(f™)| > C" — 1

for some C > 1, and the closure of the union | J ., Fix(f™) contains a Cantor
set.

REMARK. This example allows one to detect periodic points in Smale’s
horseshoe by homological means. A horseshoe is a space X with three
subspaces A,B,Z and a map f: X — X with the properties:

(a) f sends AUB into A and Z into B;

(b) Z separates A from B, i.e. there exists a function a: X — R which is
positive on A, negative on B and with a~'(0) C Z.

(Sm)  If X,A and B are closed balls, then card (Fix(f™)) < %=1 (Smale).

Proof. Take another copy X’ of X and identify each point x € AU B
with the corresponding point X’ € A’ UB’ C X’'. Denote by Y the factor of
X UX’ with that identification and construct a map ¢: ¥ — Y as follows:

—if ye X CY and a(y) > 0, then giy) =f);

— if y € X and a(y) < 0, then g(y) = (f(y))’, where ()’ means the involution
permuting X and X’ in Y ;

- if y € X', then g(y) = (9())".

Since Y has the homotopy type of the circle, |L(¢™)| = 2™ — 1, and thus

card(Fix(g’")) > 2™ —1. Projecting Y — X represents f as a factor of g that
gives Smale’s estimate.

This representation of f explains also (via Manning’s estimate) why
horseshoes have positive entropy.

CLOSED GEODESICS

Dealing with closed geodesics in a closed Riemannian manifold V we
replace the Lefschetz numbers by the Betti numbers b; of the space of maps
from the circle S! to V. We set M,, = M,(V) = 15" 'b;. The Morse
theory provides the following estimate for the number N,, = N, (V) of simple
closed geodesics of length < m:
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(Mo)  If V is simply connected and all closed geodesics are nondegenerate
(generic case), then N, > CM,, — 1 for some C >0 (see [Gr]).

(Probably, for most manifolds, M, grows exponentially.)
In the degenerate case the situation is much more difficult, but still:

(G-M) limsup,_, ., b; = oo implies im0 N,, = oo (Gromoll and Meyer,
see [G-M)).
(About recent progress, see Klingenberg’s lectures [KIl].)

The Nielsen theory collapses to a triviality in the geodesic case:

In each class of free homotopy of maps S' — V there is a closed geodesic;
if it represents an indivisible element in m(V), then every closed geodesic
from that class is simple.

The estimate for N,, contained in this statement is exact for manifolds of
negative curvature. For such manifolds N,, > C" —2 for some C > 1 (Sinai,
see Appendix 7). But even for manifolds homeomorphic to the 2-torus it is
unknown whether the estimate N,, > Cm? — 1 is the best possible.

We give now three examples having no (?) discrete time analogs and
demonstrating further connections between fundamental groups and closed
geodesics. Proofs are more or less obvious and so omitted.

1. Suppose that the group m;(V) contains a (noncommutative) nilpotent
subgroup I' without torsion. Take a ~ € [I',I], where [I',I'] denotes the
commutator subgroup of I" and -~y is not the identity element, and denote by
Z the (free cyclic) group generated by . Denote by N? the number of closed
geodesics of length < m representing elements from Z. Then N2 > Cm — 1
and there are infinitely many divisible elements in Z represented by simple

closed geodesics; these geodesics can be chosen shortest, each in its homotopy
class.

2. There is a non-empty class B of finitely presented groups such that
if m(V) € B, then there exists an infinite sequence g; of simple closed
contractible geodesics in V such that each ¢; provides local minimum to
the length functional and length(g;) — oo as i — oco. For example, B

contains all groups with unsolvable word problem. (See Appendix 8 for further
information.)
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3. In order to make use of m; in locating other (not locally minimal)
closed geodesics without non-degeneracy condition, one has to extend [Gr] to
the non simply connected situation. When V is homeomorphic to Vo x S! and
Vo 1s simply connected, we can apply [Gr] directly and get N,,(V) > C log(m)
for some C > 0. (Probably this is true when H;(V) is infinite or at least when
m1(V) = Z.) The last estimate can be sharpened and we show this here for
the simplest example when Vj is the sphere S° and the proof is obvious [Gr].

Let V be homeomorphic to S> x S'. Then there exist closed geodesics
g} C V' (not necessarily simple) such that

1. Each g}, i,j = 1,2,..., represents v € m (V) where v is a generator
in m (V).

2. For each i the geodesic g\ is the shortest in its homotopy class.
Denote by |gt| the length of gi.

3. |git™| + C > |gi| +|g¥| > |git|, where C >0 and i,k=1,2,...
gJ’\ +C> |g}+l( > \gj’| for some C >0 and i,j=1,2,...

< Cli — k| for some C >0 and i,j,k=1,2,...

4
S. ‘gﬂ—‘gﬂ
6 gjlz%forsome C>0and i,j=1,2,...

COROLLARY. If V is as above, then limsup,, . &m(_zV_) > const > 0.

All our estimates give a rather poor approximation to the (unknown) reality.
Probably, in most cases N, grows exponentially. That is so, of course, for
“CO-generic” manifolds (“C°-generic” is used for C°-generic manifolds having
uncountably many closed geodesics).
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