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THREE REMARKS ON GEODESIC DYNAMICS
AND FUNDAMENTAL GROUP

by Mikhail GROMOV

§1. HOMOTOPIC STABILITY

For a Riemannian manifold V we denote by S = S(V) the space of all
unit tangent vectors. We denote by G(V) the geodesic foliation on § : leaves
are orbits of the geodesic flow (i.e. liftings to S of geodesics from V).

GEODESIC RIGIDITY. If VW are closed manifolds of negative curva-
ture with isomorphic fundamental groups, then the spaces S(V) and S(W)
are homeomorphic. Moreover the geodesic foliations G(V) and G(W) are
homeomorphic (i.e. there is a homeomorphism S(V) — S(W) sending leaves
from G(V) into leaves from G(W)).

It is unknown whether V and W are homeomorphic, The last question
was discussed several times by Cheeger, Gromoll, Meyer and myself. In the
end Cheeger constructed (see below) a homeomorphism between the Stiefel
fiberings over V and W. Later Veech suggested to me that geodesic rigidity
would be a better geometric substitute for the Mostow rigidity theorem
than existence of a homeomorphism V — W. Unfortunately the geodesic
rigidity theorem is too simple and superficial and it does not lead to deep
corollaries of the Mostow theorem. For example, finiteness of the group
Aut(m;(V))/ Conj(m1(V)) can not be derived (at least directly) from geodesic
rigidity. (“Aut” means the group of automorphisms of the fundamental group,

“Conj” means the group of inner automorphisms. The case dimV = 2 is
excluded.)
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THE CHEEGER HOMEOMORPHISM. Denote by Sty(V) the space of all
tangential orthonormal 2-frames in V. If V and W are as before, then
the spaces St;(V) and Sty(W) are homeomorphic.

The Cheeger construction is more canonical than our geodesic homeomor-
phism. In particular, St;(V) can be viewed as a functorial object over (V).

STABLE HOMEOMORPHISM. As we have already mentioned, existence of
a homeomorphism V — W is still a problem, but existence of a stable
homeomorphism (homeomorphism V x RY — W x RY with large N) follows
immediately from the topological equivalence between unit tangent bundles
of V and W (see below).

CONSTRUCTIONS AND PROOFS

Ideas and notions involved in the constructions below are well known and
due to M. Morse (see Appendix 2 for details).

For a complete simply connected manifold X of negative curvature we
denote by CI(X) its compactification (closure) and by O(X) the complement
CI(X) \ X. The space 0X is homeomorphic to the (n— 1)-sphere, n = dim X,
and it can be viewed as the set of all asymptotic classes of geodesic rays
in X.

Consider a group I' of isometries acting on X. Such an action can be
continuously extended to O(X). When I is discrete and the factor X/T" is
compact, the space 0(X) and the action of I' in 9(X) depend (functorially)
only on I'. When I' = m;(V) and X is the universal covering of V, then the
unit tangent bundle of V is topologically equivalent to the bundle associated to
the covering X — V with fiber 0(X). This immediately yields the topological
equivalence of tangent bundles and so the stable homeomorphism theorem.

For a geodesic ray r C X we denote by 0(r) € 9(X) the asymptotic class
it represents. For an oriented geodesic g we denote by 07 (g) € O(X) and
97 (g) € (X) the asymptotic classes of its positive and negative directions.
When X has strictly negative curvature (i.e. the upper limit of sectional
curvature is negative), the map g — (8+(g), 8_(9)) € 0(X) x 0(X) establishes
a homeomorphism between the set of all oriented geodesics in X and the
complement 6*(X) = (8(X) x d(X)) \ A, where A is the diagonal.
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THE CHEEGER HOMEOMORPHISM

Denote by 0°(X) the set of triples (x1.x3.X3), X1.X2.X3 € O(X) with x; # X
for i # j. If X has strictly negative curvature, then Stn(X) is canonically
homeomorphic to 9*(X).

Proof. Realize an s € St,(X) by a pair (g.1) where g C X is an oriented
geodesic and r C X is a geodesic ray starting from a point x € g and normal to
g. Set Chee(s) = Chee(g.r) = (87(9). 97 (9). O(r)) . This is a homeomorphism
because the normal projection P = P,: X — g can be continuously extended

to CICO \ {07 (9). 0 ()}

REMARK. The original construction of Cheeger is more symmetric: he
realizes an s € St>(X) by a triple of rays (ry.r».73) all starting from the same
point x € X with angles 120° between every two of them.

Applying the above construction to the universal covering X of a compact
manifold V we get a homeomorphism between St»(V) and the factor of 8°(X)
by the diagonal action of T = (V). This proves the Cheeger homeomorphism
theorem.

GEODESIC RIGIDITY

Realize points from S(X) by pairs (g.x). where g is an oriented
geodesic and x € g. When X and Y are the universal coverings of V
and W, an isomorphism /: 7;(V) — w1 (W) induces a homeomorphism
D: 9*(X) — 9*(Y). View D as a homeomorphism between the sets of oriented
geodesics in X and Y. Take a smooth equivariant map fo: X — Y (i.e. the
lifting of a smooth homotopy equivalence V — W corresponding to /)
and define a map Fy: S(X) — S(¥) as follows: Fy(g.x) = (h.v), h = D(g),
v = y(x) = Ppofy(x). (We use in ¥ the same representation of points from S(Y)
as in X and P, means the normal projection ¥ — £.) The map F preserves
the foliations G(X) and G(Y) but it is not necessarily a homeomorphism :
it can identify points lying on the same geodesic. Choose natural parameters
(length) in all geodesics and average Fj along geodesics by the formula:

F.(g,%) = (h. % / - V(1) dr),
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where h = D(g), t,x € g, y(t) € h, y(t) = P,ofy(t). When c is large enough,
the map F, is a homeomorphism and it is obviously equivariant. Returning
to V and W we get the geodesic homeomorphism S(V) — S(W).

GENERALIZATIONS

The hyperbolic ideas of Morse were successfully applied to discrete
type systems by Shub (expanding endomorphisms, see [Sh]) and Franks
(my -diffeomorphisms, see [Fr]). Their results are discussed (and slightly
generalized) in Appendix 3.

From a global geometric point of view generalizations of totally hyperbolic
systems must include manifolds of nonpositive curvature and correspondingly
semihyperbolic systems. (See Appendix 4.)

In differential dynamics most attention has always been paid to “local”
versions of hyperbolicity (stability, Anosov’s systems, Axiom A diffeomor-
phisms of Smale). We do not touch here upon that more analytical line of
development of Morse’s ideas.

§2. ENTROPY

Take a closed Riemannian manifold V, consider its universal covering X
and denote by Vol,(R), x € X, the volume of the ball of radius R centered
at x. Set H(V) = limg_, o log Vol,(R). The limit obviously exists and does
not depend on x. Denote by A(V) the topological entropy of the geodesic
flow in S(V).

ENTROPY ESTIMATE. We have h(V) > H(V).

‘COROLLARY. If the fundamental group (V) can be presented by k
generators and one relation and Diam(V) < 1 (Diam means the diameter

of V), then (V) > log(k — 1).

The entropy estimate immediately follows from the Covering lemma.
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COVERING LEMMA. Take a compact manifold S and consider a regular
(normal) covering T — S with the action of T' = m1(S)/mi(T). Fix a
fundamental domain D C T and denote by N(U), U C X, the number
of motions v € I' such that the intersection y(U) D is not empty. Consider
an action of the group R of reals in S and its lifting to T.

The entropy h of the action of R in S satisfies

1
h > liminf — log N(r(D)),
F—00 IF’

where r(D) denotes the image of D under the lifted action of r € R in T.

Proof. Use the definition of entropy involving coverings.

This lemma (and the proof) holds for discrete time systems and immediately
implies Manning’s estimate of the topological entropy of an f: S — S in terms
of the spectral radius of f.: H{(S;R) — H;(S;R). See [Ma], [Pu]. In Appendix
5 we show how to make use of the whole group m(S).

§3. PERIODIC ORBITS

For maps f: § — S there are several ways to estimate from below the
number card (Fix(f™)) of all points of period m. Denote by L(f) the Lefschetz
number Y ._ (—1) Trace(f.;), where i = dimS and fi;: H;(S;R) — Hi(S;R).

(L)

(Sh-S)

(Nie)

If all periodic points are nondegenerate (say, f is smooth and
generic), then card(FiX(f’")) > |L(f)| (Lefschetz).

If f is smooth and lim,,_, . |L(f™)| = oo, then

lim card (Fix(f")) = oo

m—oo

(Shub and Sullivan, see [Sh-S]).

Generally there is no way to extend the (L)-estimate to all maps, but
in the presence of the fundamental group one can apply the Nielsen

theory of fixed-point classes (see [Nie] and Appendix 6). This theory
yields in many cases the estimate

card (Fix(F)) > const |L(f)|,

and sometimes even card (Fix(f™)) > |L(F™)
contfinuous map.

, Where f is an arbitrary
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EXAMPLE. Let S be a compact cell complex with homotopy type of a torus
and let f: S — S be a continuous map such that f,;: H;(S;R) — H;(S;R) is
hyperbolic (no eigenvalues with norm 1). Then

card(Fix(f™)) > |[L(f™)| > C" — 1

for some C > 1, and the closure of the union | J ., Fix(f™) contains a Cantor
set.

REMARK. This example allows one to detect periodic points in Smale’s
horseshoe by homological means. A horseshoe is a space X with three
subspaces A,B,Z and a map f: X — X with the properties:

(a) f sends AUB into A and Z into B;

(b) Z separates A from B, i.e. there exists a function a: X — R which is
positive on A, negative on B and with a~'(0) C Z.

(Sm)  If X,A and B are closed balls, then card (Fix(f™)) < %=1 (Smale).

Proof. Take another copy X’ of X and identify each point x € AU B
with the corresponding point X’ € A’ UB’ C X’'. Denote by Y the factor of
X UX’ with that identification and construct a map ¢: ¥ — Y as follows:

—if ye X CY and a(y) > 0, then giy) =f);

— if y € X and a(y) < 0, then g(y) = (f(y))’, where ()’ means the involution
permuting X and X’ in Y ;

- if y € X', then g(y) = (9())".

Since Y has the homotopy type of the circle, |L(¢™)| = 2™ — 1, and thus

card(Fix(g’")) > 2™ —1. Projecting Y — X represents f as a factor of g that
gives Smale’s estimate.

This representation of f explains also (via Manning’s estimate) why
horseshoes have positive entropy.

CLOSED GEODESICS

Dealing with closed geodesics in a closed Riemannian manifold V we
replace the Lefschetz numbers by the Betti numbers b; of the space of maps
from the circle S! to V. We set M,, = M,(V) = 15" 'b;. The Morse
theory provides the following estimate for the number N,, = N, (V) of simple
closed geodesics of length < m:




THREE REMARKS ON GEODESIC DYNAMICS 397

(Mo)  If V is simply connected and all closed geodesics are nondegenerate
(generic case), then N, > CM,, — 1 for some C >0 (see [Gr]).

(Probably, for most manifolds, M, grows exponentially.)
In the degenerate case the situation is much more difficult, but still:

(G-M) limsup,_, ., b; = oo implies im0 N,, = oo (Gromoll and Meyer,
see [G-M)).
(About recent progress, see Klingenberg’s lectures [KIl].)

The Nielsen theory collapses to a triviality in the geodesic case:

In each class of free homotopy of maps S' — V there is a closed geodesic;
if it represents an indivisible element in m(V), then every closed geodesic
from that class is simple.

The estimate for N,, contained in this statement is exact for manifolds of
negative curvature. For such manifolds N,, > C" —2 for some C > 1 (Sinai,
see Appendix 7). But even for manifolds homeomorphic to the 2-torus it is
unknown whether the estimate N,, > Cm? — 1 is the best possible.

We give now three examples having no (?) discrete time analogs and
demonstrating further connections between fundamental groups and closed
geodesics. Proofs are more or less obvious and so omitted.

1. Suppose that the group m;(V) contains a (noncommutative) nilpotent
subgroup I' without torsion. Take a ~ € [I',I], where [I',I'] denotes the
commutator subgroup of I" and -~y is not the identity element, and denote by
Z the (free cyclic) group generated by . Denote by N? the number of closed
geodesics of length < m representing elements from Z. Then N2 > Cm — 1
and there are infinitely many divisible elements in Z represented by simple

closed geodesics; these geodesics can be chosen shortest, each in its homotopy
class.

2. There is a non-empty class B of finitely presented groups such that
if m(V) € B, then there exists an infinite sequence g; of simple closed
contractible geodesics in V such that each ¢; provides local minimum to
the length functional and length(g;) — oo as i — oco. For example, B

contains all groups with unsolvable word problem. (See Appendix 8 for further
information.)
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3. In order to make use of m; in locating other (not locally minimal)
closed geodesics without non-degeneracy condition, one has to extend [Gr] to
the non simply connected situation. When V is homeomorphic to Vo x S! and
Vo 1s simply connected, we can apply [Gr] directly and get N,,(V) > C log(m)
for some C > 0. (Probably this is true when H;(V) is infinite or at least when
m1(V) = Z.) The last estimate can be sharpened and we show this here for
the simplest example when Vj is the sphere S° and the proof is obvious [Gr].

Let V be homeomorphic to S> x S'. Then there exist closed geodesics
g} C V' (not necessarily simple) such that

1. Each g}, i,j = 1,2,..., represents v € m (V) where v is a generator
in m (V).

2. For each i the geodesic g\ is the shortest in its homotopy class.
Denote by |gt| the length of gi.

3. |git™| + C > |gi| +|g¥| > |git|, where C >0 and i,k=1,2,...
gJ’\ +C> |g}+l( > \gj’| for some C >0 and i,j=1,2,...

< Cli — k| for some C >0 and i,j,k=1,2,...

4
S. ‘gﬂ—‘gﬂ
6 gjlz%forsome C>0and i,j=1,2,...

COROLLARY. If V is as above, then limsup,, . &m(_zV_) > const > 0.

All our estimates give a rather poor approximation to the (unknown) reality.
Probably, in most cases N, grows exponentially. That is so, of course, for
“CO-generic” manifolds (“C°-generic” is used for C°-generic manifolds having
uncountably many closed geodesics).
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WHY THE APPENDICES WERE NOT WRITTEN:
AUTHOR’S APOLOGIES TO THE READERS

APPENDIX 2. The stable homeomorphism suggests a geometric link be-
tween the homotopy and topological invariance of Pontryagin classes, at least
for manifolds with negative curvature but I did not manage to forge this to
my satisfaction till 1996 (see [Gro,]); also see [Fa-Jo] for a deeper analysis.

APPENDIX 3. One can define a notion of hyperbolicity for an automorphism
o of an arbitrary finitely generated group I', such that (I',a) functorially
defines a Bowen-Franks hyperbolic system (see [Gro;]). Unfortunately, this
class of (I',«) is rather limited, e.g. is not closed under free products and

does not include hyperbolic automorphisms of surface groups. I still do not
know what the right setting 1is.

APPENDIX 4. An obvious example of semi-hyperbolicity is provided by
non-strictly expanding endomorphisms, where the geometric picture is rather
clear. However, I still do not see a functorial description, in the spirit of the
symbolic dynamics, of more general semi-hyperbolic systems, not even for

the geodesic (or Weil chamber) flows on locally symmetric spaces (compare
[B-G-S] and [Br-Ha]).

APPENDIX 5. The section on entropy was inspired by Manning’s paper
[Ma ], but I was unaware of the prior paper by Dinaburg (see [Din]) that
essentially contained the entropy estimate for geodesic flows (also discussed in
[Ma;]). On the other hand, estimating the entropy of an endomorphism (or an
automorphism) f in terms of f.: m; — m; appears now much less clear than
it seemed to me back in 1976. It is not hard to bound the entropy from below
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via the “asymptotic stretch” of f,: m; — 7 with respect to the word metric
in 7 (see [Bow]). But this is not sharp even for linear automorphisms of tori
T", where the entropy is expressed by the “k-dimensional stretch” on H,; for
some k < n that equals the spectral radius of f, on Hj. Such k-stretch can
be defined, in general, in terms of f,: 7w1(S) — 7(S) and the classifying map
S — K(my, 1) (refining the spectral radius of f. on H* coming from K(rmy, 1)),
but my obvious “proof” of the lower bound on the entropy by this k-stretch
missed a hidden trap. This was also overlooked in [Mas] (for f.: Hy — Hj,
where a proper identification of the “k-stretch” with the spectral radius needs
extra work), as was pointed out to me much later by David Fried. (The
difficulty already appears for closed subsets S in the torus 7" invariant under
linear automorphisms f of 7", where one wishes to estimate the entropy of
f|S in terms of f, acting on the spectral cohomology of S coming from T”.
On the other hand, the case of 7" — T" is settled in [Mi-Pr].)

APPENDIX 6. Probably, the recent progress in Nielsen theory allows a
description of the cases, where card(Fixf) is well controlled from below by
some twisted Lefschetz number (see [Fel]).

APPENDIX 7. Nothing interesting to say.

APPENDIX 8. Minima of geometric functionals related to the logical
complexity have been studied in depth by A. Nabutovski (see [Na] and
references therein). Yet I do not feel ready yet to write this Appendix. For
example, I do not see what is the actual influence of a suitable (?) complexity
measure of (V) on the Plateau problem in V.
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NOTE OF THE EDITORS

The above paper was written and circulated as a SUNY preprint in 1976.
It has been reproduced here without change, except for a very small number
of obvious misprints. The “apologies” were written in May 2000.

We list below, for the reader’s convenience, a few later papers which either
refer to the paper above, or (re)prove statements from it, or are related to it
in some other way.

BALLMANN, W., G. THORBERGSSON and W. ZILLER. Closed geodesics and the
fundamental group. Duke Math. J. 48 (1981), 585-588.
[This paper quotes “Three remarks...”, but does not use it.]

BALLMANN, W. Geschlossene Geoditische auf Mannifgaltigkeiten mit unendlicher
Fundamentalgruppe. Topology 25 (1986), 55-69.
[This gives proofs of some results in “Three remarks...”.]

BANGERT, V. Geoditische Linien auf Riemannschen Mannifgaltigkeiten. Jahresber.
Deutsch. Math.-Verein. 87 (1985), 39-66.
[This quotes “Three remarks...”, three times in Item 3.18.]

BOWEN, R. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer.
Math. Soc. 153 (1971), 401-414; 181 (1973), 509--510.

FATHI, A. and L. FLAMINIO. Infinitesimal conjugacies and Weil-Petersson metric. Ann.
Inst. Fourier 43 (1993), 279-299.

GHYS, E. Flots d’Anosov sur les 3-variétés fibrées en cercles. Ergodic Theory
Dynamical Systems 4 (1984), 67-80.
[See the end of Part 4.]

GRrRoMOV, M. Hyperbolic groups. In: Essays in Group Theory. Math. Sci. Res. Inst.
Publ. § (Springer 1987), 75-263.
[“Three ‘remrarks ...” is not quoted there, but is just below the surface, among
other places in the discussion on the geodesic flow; see e.g. Corollary 8.3.E.]

—— Asymptotic Invariants of Infinite Groups. Volume 2 of Geometry Group Theory,
Sussex 1991, G. A. Niblo and M. A. Roller editors, Cambridge Univ. Press (1993).
[This quotes “Three remarks...”, on p. 136].

KANAI, M. Geodesic flows of negatively curved manifolds with smooth stable and
unstable foliations. Ergodic Theory Dynamical Systems 8 (1988), 215-239.
MATSUMOTO, S. and T. TSUBOI. Transverse intersections of foliations in three-manifolds.

Preprint, 1999.
[This quotes “Three remarks...” via the 1984 paper by E. Ghys.]

(‘Apologies’ et ‘Note’ rédigées en mai 2000)
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